
Cαml Reference Manual
(version 20060926)

François Pottier

INRIA

Francois.Pottier@inria.fr

1. Foreword

Cαml (pronounced: “alphaCaml”) is a tool that accepts abinding specificationand turns it into Objective Caml
type definitions and code. The generated code relies on a library known asalphaLib. Roughly speaking, a
binding specification is a definition of one or several algebraic data types, enriched with information about
names(henceforth referred to asatoms) andbinding. This information gives rise to a notion ofα-equivalence
over the values that inhabit these types. The code produced by Cαml is intended to help deal with this notion in
a safe and concise style.

This document is a reference manual. It is not a discussion of the problems raised byα-equivalence and of
the various ways in which they can be addressed. Neither is it a tutorial introduction to Cαml. These topics are
covered in a separate paper [1], which should be read first. Having a look at the demos that are shipped with
Cαml is also recommended.

2. Terminology

Cαml values are split intoexpressionsand patterns. Expressions are terms, that is, abstract syntax trees.
Expressions containabstractionsinside which atoms can be bound. Inside abstractions arepatterns. Patterns
are also terms, but are slightly different. They cannot contain abstractions; that is, abstractions cannot be nested.
Patterns can contain expressions, preceded with aspecifier that tells whether the expression lies inside or
outside thescopeof the enclosing abstraction. The distinction between expressions and patterns is reflected
in specifications, where each type is explicitly marked as anexpression typeor apattern type.

Not all occurrences of an atom play the same role. For instance, consider theλ-terma (λa.a). The central
occurrence of the atoma is meant tobinda in the body of theλ-abstraction: it is abinding occurrence. The first
and last occurrences ofa, on the other hand, are meant torefer to a previous binding occurrence ofa: they are
referring occurrences.

Both expressions and patterns can contain atoms, but they are interpreted differently. Occurrences of atoms
that lie (directly) inside an expression are interpreted as referring occurrences, while occurrences of atoms that
lie (directly) inside a pattern are interpreted as binding occurrences. In fact, this is a good way of summarizing
the distinction between expressions and patterns.

It is common to need several distinctsortsof atoms—for instance, the abstract syntax of a typed programming
language typically involves both term variables and type variables, which are separate. Cαml’s specification
language allows dealing with multiple sorts, as long as there is only a finite number of them.

3. Usage

By convention, binding specifications are stored in files whose name ends with.mla. Out of such a file,
Cαml produces an Objective Caml compilation unit, that is, a pair of an.ml file and an.mli file. Both
rely on thealphaLib library. Please have a look at the demos if you need help writing a Makefile in order
to automate the compilation process. Read the generated.mli file—it is meant to be instructive. In order to

understand how atoms are implemented and what operations they support, consult the definition of the sub-
moduleAlphaLib.Signatures(AppendixA).

4. Syntax of specifications

Notation Our terminal symbols are either literals, written inbold face, or one oflid, uid, andqid. The terminal
symbol lid represents an Objective Caml identifier whose initial letter is lowercase, such asbeGentle. The
terminal symboluid represents an Objective Caml identifier whose initial letter is uppercase, such asZero. The
terminal symbolqid represents an identifier whose initial letter is lowercase, possibly qualified with a module
path, such asList.map. These three lexical categories are defined under the nameslowercase-ident, capitalized-
ident, andvalue-pathin Objective Caml’s manual (lexical conventionsandnames).

Non-terminal symbols are written initalics. The definition of a non-terminal symbolnt begins withnt ::=
and goes on with a series of valid expansions for this symbol, each of which appears on a separate line. Each
expansion is, to a first approximation, a sequence of terminal and non-terminal symbols. Square brackets[·]
delimit an optional sub-sequence. Ellipses. . . are used to indicate repetitions of a sub-sequence. Repetitions
may or may not involve a delimiter. Although this notation is ambiguous, our syntax is simple enough that no
difficulty should arise.

The syntax of specification (.mla) files appears in Figure1. We now briefly explain each production.

Specification A specification consists of an optional prologue, followed by declarations. The order in which
the declarations appear is irrelevant: all declarations are considered mutually recursive.

Prologue A prologue is a piece of Objective Caml text, delimited with square brackets. The prologue is copied
verbatim tobothof the generated files—that is, to the.ml file and to the.mli file—so it should make sense in
both contexts. The prologue usually consists ofopen directives and of type definitions.

Declaration A declaration is asort declaration, a type declaration, a container declaration, or anidentifier
module declaration.

¦ Sort declarations.A sort declaration introduces a new sort of atoms. It is possible to declare as many sorts
as desired. Each sort declaration gives rise, in the generated code, to a distinct module. For instance, declaring
“sort termvar” gives rise to a module namedTermvar; declaring “sort typevar” gives rise to a module named
Typevar. BothTermvarandTypevarhave signature

AlphaLib.Signatures.Atomwith type identifier= Identifier.t

The module typeAtom is defined inAlphaLib.Signatures. The moduleIdentifier is defined as part of the
generated code; its identity can be controlled via an identifier module declaration. Note thatTermvar.Atom.t
andTypevar.Atom.tare distinct abstract types: that is, atoms of distinct sorts cannot be mixed.

¦ Type declarations.A type declaration introduces a new type. It is optionally parameterized by a sequence
of Objective Caml type variables. These variables, if present, are allowed to appear inside the body of the
declaration. There is, however, a restriction: all occurrences of a typet in the specification should carry the
samesequence of parameters, that is, the same type variables, in the same order.

Thebinds clause is optional. If no clause is present, the type that is being declared is considered an expression
type; otherwise, it is considered a pattern type. Abinds clause mentions a set of sorts, which are considered
bound by the pattern.

Each type declaration gives rise, in the generated code, totwo type declarations, one of which lies at toplevel,
and one of which lies inside theRawsub-module. Thus, declaring a typet gives rise to two types namedt and
Raw.t.

¦ Container declarations.A container declaration introduces a new container. A containert is an Objective
Caml type constructor with one parameter. It must represent a pure (that is, persistent) data structure with the
semantics of a container: that is, values of typeα t must represent collections of values of typeα. It must come

http://caml.inria.fr/pub/docs/manual-ocaml/manual009.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual011.html

specification::=
[prologue] declaration. . . declaration

prologue::=
[arbitrary Objective Caml directives]

declaration::=
sort sort
type [typevars] type[binds sort , . . . , sort] = body
container containerwith mapand fold and fold2
identifier module module

body::=
branch. . . branch
factor* . . . * factor
{ label : factor; . . . ; label : factor }

branch::=
| data[of factor* . . . * factor]

factor ::=
atom sort
[arbitrary Objective Caml type]
[specifier] [typevars] type[container]
< [typevars] type>
<(typebinds sort , . . . , sort) body>

specifier::=
inner
outer
neutral

typevars::=
typevar
(typevar, . . . , typevar)

typevar::=
’ lid

sort, type, label::=
lid

data, module::=
uid

container, map, fold, fold2 ::=
qid

Figure 1. Syntax of specifications

with map, fold, andfold2 functions, whose types must be

map : ∀αβ.(α → β) → α t → β t
fold : ∀αβ.(α → β → α) → α → β t → α

fold2 : ∀αβ.(α → β → β → α) → α → β t → β t → α

The semantics of themap and fold operations is standard and will not be repeated here.fold2 should iter-
ate over two containers simultaneously, in a synchronized manner. It should fail, by raising the exceptionIn-
valid argument, if the two containers have different structure – for instance, in the case of lists, if the two lists
have distinct lengths.

The names of these three functions must be supplied as part of the declaration. The containerslist andoption
are predefined (and cannot be redefined).

¦ Identifier module declarations.An identifier module declaration specifies the name of an Objective Caml
module, whose signature must beAlphaLib.Signatures.Identifier. This module is adopted as the definition of
identifiers. It is provided as a parameter to the functorAlphaLib.Atom.Makein order to produce implementations
of atoms. At most one identifier module declaration can appear in a specification. If none appears, then the
default implementationAlphaLib.Atom.Stringis used. In this default implementation, identifiers are strings, and
fresh identifiers are generated, when needed, by appending the decimal representation of an integer counter.

Body The body (that is, the right-hand side) of a type declaration can consist of asum type, a tuple type, or a
record type. A sum type consists of a list of branches. A tuple type consists of a list of factors. A record type
consists of a list of factors, each of which carries a label.

Branch Each branch in a sum type consists of a data constructor, optionally followed by a list of factors.

Factor A factor is anatom type, a foreign type, a type reference, or anabstraction type. Not all factors are
allowed in all contexts: some factors are valid only in the declaration of an expression type, while others are
valid only in the declaration of a pattern type.

¦ Atom types.An atom type consists of the keywordatom, followed by a sortsort. It can appear both within
expression types and within pattern types. Within an expression type, it is interpreted as a referring occurrence.
Within a pattern type, it is interpreted as a binding occurrence; furthermore, in that case, the sortsort must be
mentioned in thebinds clause for that type.

¦ Foreign types.A foreign type is an arbitrary Objective Caml type expression, enclosed within square
brackets. This expression can refer to any of the Objective Caml type variables currently in scope. For purposes
of α-conversion, values of foreign type are ignored entirely: that is, they are considered not to contain any
binding or referring occurrences of atoms. Values that contain modifiable state, or whose structure is not known,
because it is represented by a type variable, are typically to be considered foreign. Foreign types are valid within
expression and pattern types.

¦ Type references.A type reference primarily consists of (the name of) a type, which must be defined
elsewhere in the specification. It is optionally preceded with a sequence of type variables, and optionally
followed by a container. Type references can appear inside expression and pattern types. When within an
expression type, no specifier must be given, and the reference must be again to an expression type. When
within a pattern type, if a specifier is given, then the reference must be to an expression type: that is, specifiers
can be thought of as end-of-abstraction marks. Otherwise, it must be again to a pattern type.

¦ Abstraction types.Abstraction types are valid within expression types only. There are two syntactic forms.
In the simpler form, inside the angle brackets is (the name of) a type, which must be defined elsewhere in the
specification and must be a pattern type. It is optionally preceded with a sequence of type variables.

We stress that the contents of an abstraction must be a typename: it cannot be, for instance, an anonymous
product of factors. This is because a name is needed for the generated functions that allow creating and opening
this abstraction.

The inconvenience of having to refer to a type name is somewhat relieved by the second, more elaborate form
of abstraction types. In that form, a pattern type is introduced on the fly, and becomes the body of the abstraction.
In other words, the definition of a pattern type is inlined into the abstraction. For instance, the abstraction type

<(lambdabinds var) atom var * inner term>

is syntactic sugar for the abstraction type

< lambda>

together with the type declaration

type lambdabinds var = atom var * inner term

Specifier A specifier precedes a reference to an expression type within a pattern type. In other words, a
specifier marks the end of an abstraction. If the specifier isinner, then the expression is considered as lying
insidethe scope of the abstraction. If it isouter, then the expression is considered as lyingoutsidethe scope
of the abstraction. When the expression contains, directly or indirectly, no atoms of the sorts bound by the
abstraction, then it makes no difference whether it lies inside or outside the scope of the abstraction. In that
case, and only in that case, theneutralspecifier must be used. In other words, use of theneutralspecifier is only
permitted, and is required, in situations whereinner andouter would have the same meaning.

5. Generated Code

The compilation unit produced by Cαml out of a specification file contains a number of Objective Caml module,
type, value, and class definitions.

Modules For each atom sort declared in the specification, an “atom” module is generated. Each such module
is produced by applying the functorAlphaLib.Atom.Maketo theIdentifiermodule. (The identity of theIdentifier
module can be controlled via anidentifier module declaration.) As a result, every “atom” module has signature

AlphaLib.Signatures.Atomwith type identifier= Identifier.t

Each “atom” module defines an abstract type of atoms and provides a number of operations involving atoms,
sets and maps over atoms, maps of atoms to identifiers, and substitutions of atoms for atoms. The definition of
the signatureAlphaLib.Signatures.Atomcan be found in AppendixA.

Types For each typet declared in the specification,threetype definitions are produced, respectively called the
raw, internal, andflat versions.

The raw version, namedRaw.t, is concrete: atoms are identifiers, and abstractions are transparent—that is,
the angle brackets are erased. The raw version is intended for use by parsers and pretty-printers.

The internal version, namedt, is abstract: atoms are abstract values of the appropriate “atom” module, and
abstractions are opaque—that is, they are represented by abstract types. More precisely, in the internal version,
for each pattern typeu that appears within the body of an abstraction,two type definitions are produced: one,
namedopaqueu, is abstract, while the other, namedu, is transparent. Functions (create u andopen u) are
provided to convert back and forth between the two forms. The internal version is recommended for most uses.

Theflat version, namedFlat.t, offers abstract atoms, like the internal version, and transparent abstractions.
One can think of it as a variant of the internal version in which all abstractions have been opened, once and
for all, while guaranteeing that “all bound names are distinct”. The flat version is intended for use in some
applications where initial distinctness of bound names is sufficient, so that “working up toα-conversion” is not
really required. In such cases, it can be more convenient than the internal version.

Functions are provided to convert back and forth between the raw and internal versions (seeimport t and
export t) and between the internal and flat versions (seeflatten t andunflatten t).

Values For each expression typet, two functionsimport t andexport t allow converting between raw and
internal forms, that is, betweenRaw.tandt. The functionimport t expects one or several mappings of identifiers

to atoms—one mapping per relevant sort. Conversely,export t expects one or several mappings of atoms to
identifiers. These mappings are required when the terms to be converted contain free atoms or free identifiers.
When converting closed terms, empty mappings can be provided.

For each expression typet, two functionsflatten t andunflatten t allow converting between internal and flat
forms, that is, betweent andFlat.t. The functionflatten t recursively traverses its argument, opening every
abstraction that it encounters. The result is a “flat” term, that is, a term within which all abstractions are
transparent, and all bound atoms are guaranteed to be distinct. (Of course, it is possible to manually construct
“flat” terms wherenot all bound atoms are distinct—it is up to you to be careful.) Similarly, the function
unflatten t recursively traverses its argument, re-creating opaque abstractions where needed.

For each typet, a functionequal t offers an equality test, up toα-conversion. That is,equal t accepts two
terms of typet and tells whether they areα-variants of one another.

For each typet, a functionsubst t allows applying one or several substitutions of atoms for atoms to a term
of typet—one substitution per relevant sort.

For each expression typet, a functionfree t returns the sets of atoms that appear free in a term—again, one
set per relevant sort. For each pattern typeu, a functionbound u returns the sets of atoms that appear in a
binding position in a term. A more complex functionbound free u returns the sets of atoms that appear in a
binding position, free in inner scope, or free in outer scope.

For each pattern typeu that appears within the body of an abstraction, two functionscreate u andopen u are
produced, which convert back and forth betweenu andopaqueu. The functioncreate u has no runtime effect,
while open u “freshens” all bound atoms: that is, it replaces them with fresh atoms. This enforces the informal
convention that “bound names and free names must be chosen distinct”.

For each pattern typeu that appears within the body of an abstraction, a functionopen2 u is produced, which
allows openingtwo opaque abstractions at once, while automatically ensuring thattheir bound atoms coincide.
Of course, this is possible only if the two values of typeopaqueu that are supplied toopen2 u have identical
structure, that is, iftheir bound atoms are initially in a bijection. If no such bijection exists,open2 u fails and
raises the exceptionOpen2. In the simple case where the pattern typeu binds exactly one atom,open2 u never
fails—its use is equivalent, in that case, to two independent calls toopen u, followed with an explicit renaming
operation. In more complex cases, the definition ofu could involve products or sums, so thatu binds multiple
atoms or a variable number of atoms. In these cases,open2 u can in general fail.

Classes In order to help modularly define transformations and traversals over terms, Cαml produces two
classes, namedmapandfold.

The classmapcontains one method for every type, data constructor, and record label in the specification.
The method associated with typet has typet → t. Its default implementation returns a copy of its argument.
The copy is created viaself-calls to the relevant methods for copying sub-terms, copying record fields and/or
copying data constructor applications. The method associated with a data constructorD has the same type asD.
Its default implementation appliesD to a copy of its argument; again, the copy is obtained through appropriate
self-calls. The method associated with a record fieldf of type τ has typeτ → τ . Its default implementation
returns a copy of its argument, again created via appropriateself-calls.

If one were to create an object of classmapvia new map, each of its methods would behave as an identity
function, whose argument is traversed and copied without change. The point is that it is now easy to create a sub-
class ofmapwhere one or several methods are overridden. This results in application-specific behavior at certain
nodes and default behavior at every other node. For instance, capture-free substitution of terms for variables can
be defined in a few lines of code using this technique. This is illustrated indemos/poplmark/core.ml.

The classfold is very similar tomap, except terms are only traversed, not copied. An accumulator is threaded
through every call, that is, accepted and returned by every method. The class is parametric in the type of the
accumulator.

sort var

type ’a annotatedexpression ={
annotation : [’a ref];
body: ’a expression

}

type ’a expression =
| EVarof atom var
| EAbsof <(lambdabinds var) atom var ∗ inner ’a annotatedexpression>
| EAppof ’a annotatedexpression∗ ’a annotatedexpression

Figure 2. Annotating terms with mutable information

6. Questions and Answers

¦ How do I run experiments in the toplevel loop?Create a specification filefoo.mla and compile it, using
Cαml and Objective Caml, so as to createfoo.cmi andfoo.cmo. Then, you can exploit the toplevel loop by
entering the following directives:

#use "topfind";;
#require "alphaLib";;
#load "foo.cmo";;

If (through its prologue) your specification depends on other Objective Caml modules, you must load them
before attempting to loadfoo.cmo.

If you want to check which operations are available over atoms, type

module V = Foo.Var;;

Assuming your specification contains the declaration “sort var”, this causes the signature of the corresponding
“atom” module to be displayed.

¦ What about cyclic terms?Abstract syntax trees are not meant to be cyclic. When using Cαml, the only
way of creating cyclic terms is to exploit Objective Caml’s liberallet rec construct. Don’t do it.

¦ What about sharing? If your terms happen to have shared sub-terms, this is fine, but all sharing will be
lost when the terms are copied—that is, when they are freshened, converted, renamed, etc.

¦ What about marshaling? Marshaling and unmarshaling of terms in internal form viaoutput valueand
input valueis fine, as long as the terms areclosed, that is, have no free atoms. Marshaling a term that contains
free atoms makes no sense, because the identity of an atom is not preserved across runtime sessions. That is,
two conceptually distinct atoms that originate in different sessions could accidentally happen to receive the same
identity.

If you must marshal an open term, then you can do so, in an indirect way, by closing it. You could, for instance,
enclose it within a toplevel abstraction, where each formerly free atom becomes bound and is explicitly paired
with a non-α-varying label of your own making, such as a string or an integer. Because the atom becomes
bound, its identity vanishes, but information about its meaning can be encoded in the label.

¦How do I annotate nodes with mutable information?The trick is to use an Objective Camlref cell inside
square brackets. It is even possible to abstract over the type of the desired information, by introducing a type
parameter’a. A sample specification that uses this technique appears in Figure2.

¦ My lexer accepts identifiers that contain underscores and numerals. Wouldn’t that interact badly
with the basenameand combinefunctions of the default Identifier module (Appendix A)? No, this is fine.
An identifier such as “x 3” is turned by theimport functions into an atom of basename “x”. When this atom
is later supplied to anexportfunction, we obtain an identifier that begins with “x”, followed by “ ”, followed
by whatever integer is required to make the whole identifier unique. The result could be just “x” or perhaps
“x 24”.

In other words, dropping the “ 3”in “ x 3” when computing an atom’s basename doesn’t affect the fact that
the atom is created unique. Furthermore, distinct atoms are mapped to distinct identifiers by theexportfunctions.
The basename mechanism is supposed to help these functions produce suggestive identifiers, but does not affect
their soundness.

In fact, it would be possible to produce an implementation of theIdentifier signature (AppendixA) where
basenameis a constant function, that is, where no basename information is recorded. In that case, the identifiers
produced by theexportfunctions would be isomorphic to integers. The composition ofimportandexportwould
then act as a “name mangler”. This could be useful when trying to obfuscate code!

A. Module AlphaLib.Signatures

This module defines a couple of signatures that specify the interaction betweenalphaLiband user programs.

A.1 SignatureAlphaLib.Signatures.Identifier

This signature defines the operations that an implementation of identifiers must provide in order to appear in an
identifier module declaration.

Identifiers are usually human-readable. In fact, the default implementation of identifiers, which is automati-
cally supplied by Cαml when noidentifier module declaration is made, equates identifiers with strings.

An implementation of atoms can be built on top of any implementation of identifiers via the internal functor
AlphaLib.Atom.Make. This functor application is automatically performed by Cαml in order to produce each of
the “atom” modules (one per sort).

In order to implement this signature, one must isolate a strict subset of identifiers, which we refer to as
“base” identifiers. There must exist a function, referred to asbasename, that maps arbitrary identifiers to base
identifiers. This function does not have to (and usually cannot) be injective. (A function is injective when it
maps distinct inputs to distinct outputs.) Nevertheless, the more information it preserves, the better. Conversely,
there must exist an injective function, referred to ascombine, that maps a pair of a base identifier and an integer
value to an identifier.

Internally, every atom records the image throughbasenameof the identifier that it originally stood for. This
base identifier plays no role in determining the identity of the atom: that is, it is not used when comparing two
atoms. It is kept around for use when the atom is converted back to an identifier. At this point, it is combined,
via combine, with a unique integer, in order to obtain suitably fresh identifier.

If basenameandcombineare properly chosen, then the final identifier that is printed “resembles” the one that
was originally found. More precisely, it is desirable that the next two laws be satisfied:

basename(combine identifier i) = identifier
combine identifier0 = identifier

The first law states that the information added by combining an identifier with an integeri is exactly the
information that is lost when applyingbasename. The second law states that combining the integer 0 with
an identifier should have no effect. This is exploited to avoid needless renamings.

The default implementation of identifiers as strings defines base identifiers as strings that do not end with two
underscore characters and a number. A base identifier and an integer value are combined simply by appending

, followed with a decimal representation of the latter, to the former. In practice, this means that the identifier
x will be successively renamed intox, x 1, x 2, x 3, and so on.

module type Identifier = sig

t is the type of identifiers.

type t

Identifiers must be comparable. As usual in Objective Caml,compare id1 id2must return a negative integer
if id1 is less thanid2, a positive integer ifid2 is less thanid1, and zero otherwise.

val compare: t → t → int

basenameandcombineare described above.

val basename: t → t
val combine: t → int → t

The sub-moduleMap provides maps whose keys are identifiers. It is usually produced by applying the
standard library functorMap.Maketo the typet and the functioncompareabove. This sub-module is used by
the functions that convert back and forth between raw and internal forms, that is, between atoms and identifiers.

module Map : Map.Swith type key = t

end

A.2 SignatureAlphaLib.Signatures.Atom

This signature specifies the operations that every “atom” module provides. These operations are grouped into
several sub-modules that provide:

• basic operations on atoms;
• sets of atoms;
• maps of atoms to arbitrary data;
• maps of atoms to identifiers;
• substitutions of atoms for atoms.

module type Atom = sig

The typeidentifier is the type of the identifiers on top of which this implementation of atoms is built.

type identifier

The sub-moduleAtomoffers an abstract type of atoms. Atoms are abstract entities that support two (classes
of) operations, namely creation of fresh atoms and comparison of two atoms.

Every atom carries a unique integer, which can be viewed as its identity. This integer is used in comparisons.
A global integer counter is maintained and incremented when fresh atoms are created.

Every atom also carries a base name, that is, an identifier. This identifier is not in general unique, and
is not part of the atom’s identity. It is used when converting atoms back to identifiers: see, for instance,
AtomIdMap.add.

When a fresh atom is created, its base name is taken either from an existing identifier or from an existing
atom. Two functions,freshbandfresha, are provided for this purpose.

module Atom : sig

t is the type of atoms.

type t

The callfreshb identifierproduces a fresh atom whose base name is that ofidentifier.

val freshb: identifier → t

The callfresha aproduces a fresh atom whose base name is that ofa.

val fresha: t → t

Atoms can be tested for equality, for ordering, and hashed. The user is warned against careless use of
compareandhash. Atoms are renamed duringα-conversion, which affects their relative ordering and their hash
code. It is fine to use these operations as long as one guarantees that no renaming takes place.

val equal: t → t → bool
val compare: t → t → int
val hash: t → int

It is possible to retrieve an atom’s identity and base name. There is in general no good reason of doing so,
except for debugging purposes.

val identity : t → int
val basename: t → identifier

The exceptionUnknownis raised byAtomIdMap.lookup.

exception Unknownof t

end

The sub-moduleAtomSetoffers a representation of finite sets of atoms.

module AtomSet: sig

t is the type of sets of atoms.

type t
type element= Atom.t

emptyis the empty set.

val empty: t

singleton ais the singleton set{a}.
val singleton: element→ t

add x sis ({x} ∪ s).

val add : element→ t → t

union s1 s2is (s1∪ s2).

val union : t → t → t

inter s1 s2is (s1∩ s2).

val inter : t → t → t

diff s1 s2is (s1\ s2).

val diff : t → t → t

mem a sis true if and only if a is a member ofs.

val mem: element→ t → bool

is empty sis true if and only if s is the empty set.

val is empty: t → bool

disjoint s1 s2is true if and only if the setss1ands2are disjoint, that is, if and only if their intersection is
empty.

val disjoint : t → t → bool

equal s1 s2is true if and only if s1ands2are extensionally equal, that is, if and only if they have the same
members.

val equal: t → t → bool

subset s1 s2is true if and only if s1 is a subset ofs2, that is, if and only if every member ofs1 is also a
member ofs2.

val subset: (t → t → bool)

The calliter f shas the effect of applying the functionf in turn to every member ofs.

val iter : (element→ unit) → t → unit

The call fold f s accuhas the effect of applying the functionf in turn to every member ofs and to
an accumulator whose value, threaded through the calls, is initiallyaccu. Its result is the final value of the
accumulator.

val fold : (element→ α → α) → t → α → α

cardinal sis the cardinal of the sets.

val cardinal : t → int

choose sreturns an arbitrarily chosen element ofs, if s is nonempty, and raisesNot foundotherwise.

val choose: t → element

compareis an ordering over sets.

val compare: t → t → int

end

The sub-moduleAtomMapoffers a representation of finite maps whose keys are atoms and whose data can
have arbitrary typeα.

module AtomMap : sig

keyis the type of atoms.

type key =
Atom.t

α t is the type of maps of atoms to data of typeα.

type α t

emptyis the empty map.

val empty: α t

singleton a dis the singleton map that maps atoma to datumd.

val singleton: key → α → α t

add a x mis the map that maps atoma to datumd and elsewhere behaves likem.

val add : key → α → α t → α t

strict add a x mraisesStrict a if a is in the domain ofm and otherwise returnsadd a x m.

exception Strictof key

val strict add : key → α → α t → α t

union m1 m2is the map that behaves likem2wherem2 is defined and elsewhere behaves likem1. In other
words, the bindings inm2take precedence over those inm1.

val union : α t → α t → α t

lookup a mreturns the datum associated with atoma in the mapm, if defined, and raises the exception
Not foundotherwise.lookupis also known asfind.

val lookup: key → α t → α
val find : key → α t → α

is empty mis true if and only if m is the empty map.

val is empty: α t → bool

map f mis the map obtained by composing the functionf with the mapm, that is, the map that maps an
atoma to (f d) whenmmapsa to d.

val map: (α → β) → α t → β t

mapi f mis the map that maps an atoma to (f a d) whenmmapsa to d.

val mapi : (key → α → β) → α t → β t

iter f mappliesf in turn to each binding in the mapm.

val iter : (key → α → unit) → α t → unit

fold f m accuappliesf in turn to each binding in the mapm, threading an accumulator through the sequence
of calls.

val fold : (key → α → β → β) → α t → β → β

cardinal mreturnsm’s cardinal, that is, the number of keys it binds, or, in other words, the cardinal of its
domain.

val cardinal : α t → int

choose mreturns an arbitrarily chosen binding inm, if m is nonempty, and raisesNot foundotherwise.

val choose: α t → key × α

end

The sub-moduleAtomIdMapoffers finite maps of atoms to identifiers, with the property that every atom is
mapped to a distinct identifier. This invariant is enforced by having the library pick a unique identifier when a
new atom is added to the domain of the map. That is, the client does not control which identifiers are picked.

module AtomIdMap : sig

keyis the type of atoms.

type key =
Atom.t

t is the type of maps.

type t

emptyis the empty map.

val empty: t

add a mis a map that maps the atoma to a unique identifier (that is, an identifier not in the codomain of
m) and elsewhere behaves likem. The base name ofa is used when picking this identifier. The atoma must not
be a member of the domain ofm.

val add : key → t → t

add set s mis the map obtained by successivelyadding every member of the atom sets to the mapm.

val add set: AtomSet.t→ t → t

lookup a mreturns the identifier associated with the atoma in the mapm, if defined, and raises the exception
Atom.Unknownotherwise.lookupis also known asfind.

val lookup: key → t → identifier
val find : key → t → identifier

iter f mappliesf in turn to each binding in the mapm.

val iter : (key → identifier → unit) → t → unit

fold f m accuappliesf in turn to each binding in the mapm, threading an accumulator through the sequence
of calls.

val fold : (key → identifier → β → β) → t → β → β

end

The sub-moduleSubstoffers substitutions of atoms for atoms. These are total mappings of atoms to atoms
that behave as the identity outside of a finite set of atoms, known as their domain.

module Subst : sig

t is the type of substitutions.

type t

id is the identity substitution.

val id : t

is id substis true if and only if substis the identity substitution.

val is id : t → bool

singleton a bis the singleton substitution that maps atoma to atomb.

val singleton: Atom.t → Atom.t → t

add a b substis the substitution that maps atoma to atomb and elsewhere behaves likesubst.

val add : Atom.t → Atom.t → t → t

union subst1 subst2is the substitution that behaves likesubst2on its domain and elsewhere behaves like
subst1. In other words, the bindings insubst2take precedence over those insubst1.

val union : t → t → t

compose subst1 subst2is the composition ofsubst1with subst2, that is, the substitution that maps every
atoma to subst1(subst2(a)).

val compose: t → t → t

freshen s substis a substitution that maps every atoma in the sets to a fresh atom (obtained via
Atom.fresha a) and elsewhere behaves likesubst.

val freshen: AtomSet.t→ t → t

lookup a substis the image ofa throughsubst. It is never undefined, since substitutions are viewed as total
mappings.lookupis also known asfind.

val lookup: Atom.t → t → Atom.t
val find : Atom.t → t → Atom.t

freshen2is undocumented.

val freshen2: Atom.t → t → Atom.t → t → t × t

end

end

References
[1] François Pottier.An overview of Cαml. Submitted, June 2005.

http://cristal.inria.fr/~fpottier/publis/fpottier-alphacaml.pdf

	Foreword
	Terminology
	Usage
	Syntax of specifications
	Generated Code
	Questions and Answers
	Module AlphaLib.Signatures
	Signature AlphaLib.Signatures.Identifier
	Signature AlphaLib.Signatures.Atom

