Caml Reference Manual
(version 20060926)

Francois Pottier

INRIA
Francois.PottierQinria.fr

1. Foreword

Caml (pronounced: “alphaCaml”) is a tool that acceptsrading specificatiormnd turns it into Objective Caml
type definitions and code. The generated code relies on a library knowlplaslib. Roughly speaking, a
binding specification is a definition of one or several algebraic data types, enriched with information about
nameghenceforth referred to aomg andbinding This information gives rise to a notion efequivalence
over the values that inhabit these types. The code producedny i€ intended to help deal with this notion in
a safe and concise style.

This document is a reference manual. It is not a discussion of the problems raiseeldoyvalence and of
the various ways in which they can be addressed. Neither is it a tutorial introductiermb These topics are
covered in a separate papét,[which should be read first. Having a look at the demos that are shipped with
Caml is also recommended.

2. Terminology

Caml values are split inteexpressionsand patterns Expressions are terms, that is, abstract syntax trees.
Expressions contaiabstractionsinside which atoms can be bound. Inside abstractionpatterns Patterns
are also terms, but are slightly different. They cannot contain abstractions; that is, abstractions cannot be nested.
Patterns can contain expressions, preceded wgpezifierthat tells whether the expression lies inside or
outside thescopeof the enclosing abstraction. The distinction between expressions and patterns is reflected
in specifications, where each type is explicitly marked asx@ression typer apattern type

Not all occurrences of an atom play the same role. For instance, consideitén® o (\a.a). The central
occurrence of the atomis meant tdind a in the body of the\-abstraction: it is d&inding occurrenceThe first
and last occurrences af on the other hand, are meantréder to a previous binding occurrence @fthey are
referring occurrences

Both expressions and patterns can contain atoms, but they are interpreted differently. Occurrences of atoms
that lie (directly) inside an expression are interpreted as referring occurrences, while occurrences of atoms that
lie (directly) inside a pattern are interpreted as binding occurrences. In fact, this is a good way of summarizing
the distinction between expressions and patterns.

Itis common to need several distirsdrtsof atoms—for instance, the abstract syntax of a typed programming
language typically involves both term variables and type variables, which are separatks €pecification
language allows dealing with multiple sorts, as long as there is only a finite number of them.

3. Usage

By convention, binding specifications are stored in files whose name ends.miith Out of such a file,
Caml produces an Objective Caml compilation unit, that is, a pair of.anh file and an.mli file. Both

rely on thealphalLib library. Please have a look at the demos if you need help writing a Makefile in order
to automate the compilation process. Read the generaifeifile—it is meant to be instructive. In order to

understand how atoms are implemented and what operations they support, consult the definition of the sub-
moduleAlphaLib.SignaturegAppendixA).

4. Syntax of specifications

Notation Our terminal symbols are either literals, writterbiald face, or one ofid, uid, andgid. The terminal
symbollid represents an Objective Caml identifier whose initial letter is lowercase, sulsbGentle The
terminal symbobid represents an Objective Caml identifier whose initial letter is uppercase, sdenoahe
terminal symbolid represents an identifier whose initial letter is lowercase, possibly qualified with a module
path, such akist.map These three lexical categories are defined under the Namescase-identcapitalized-
ident andvalue-pathin Objective Caml’s manuald€xical conventionendname}.

Non-terminal symbols are written italics. The definition of a non-terminal symbnot begins withnt ::=
and goes on with a series of valid expansions for this symbol, each of which appears on a separate line. Each
expansion is, to a first approximation, a sequence of terminal and non-terminal symbols. Square prackets
delimit an optional sub-sequence. Ellipses are used to indicate repetitions of a sub-sequence. Repetitions
may or may not involve a delimiter. Although this notation is ambiguous, our syntax is simple enough that no
difficulty should arise.

The syntax of specification fi1a) files appears in Figurk We now briefly explain each production.

Specification A specification consists of an optional prologue, followed by declarations. The order in which
the declarations appear is irrelevant: all declarations are considered mutually recursive.

Prologue A prologue is a piece of Objective Caml text, delimited with square brackets. The prologue is copied
verbatim tobothof the generated files—that is, to thel file and to the.m1i file—so it should make sense in
both contexts. The prologue usually consistepén directives and of type definitions.

Declaration A declaration is asort declaration atype declarationa container declarationor anidentifier
module declaration

< Sort declarationsA sort declaration introduces a new sort of atoms. It is possible to declare as many sorts
as desired. Each sort declaration gives rise, in the generated code, to a distinct module. For instance, declaring
“sort termvar’ gives rise to a module namékkrmvar declaring ‘sort typevar gives rise to a module named
Typevar Both Termvarand Typevarhave signature

AlphaLib.Signatures.Atowith type identifier= Identifier.t

The module typeAtomis defined inAlphaLib.SignaturesThe moduleldentifier is defined as part of the
generated code; its identity can be controlled via an identifier module declaration. Nofe thmtar. Atom.t
andTypevar.Atom.are distinct abstract types: that is, atoms of distinct sorts cannot be mixed.

o Type declarationsA type declaration introduces a new type. It is optionally parameterized by a sequence
of Objective Caml type variables. These variables, if present, are allowed to appear inside the body of the
declaration. There is, however, a restriction: all occurrences of attype¢he specification should carry the
samesequence of parameters, that is, the same type variables, in the same order.

Thebinds clause is optional. If no clause is present, the type that is being declared is considered an expression
type; otherwise, it is considered a pattern typebiAds clause mentions a set of sorts, which are considered
bound by the pattern.

Each type declaration gives rise, in the generated codegttype declarations, one of which lies at toplevel,
and one of which lies inside tHeawsub-module. Thus, declaring a typgives rise to two types nameand
Raw.t

< Container declarationsA container declaration introduces a new container. A contdirgean Objective
Caml type constructor with one parameter. It must represent a pure (that is, persistent) data structure with the
semantics of a container: that is, values of tygemust represent collections of values of typdt must come

http://caml.inria.fr/pub/docs/manual-ocaml/manual009.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual011.html

specification:=
[prologue] declaration. . . declaration

prologue::=
[arbitrary Objective Caml directivep
declaration::=
sort sort
type [typevarg type[binds sort, ..., sort] = body
container containerwith mapand fold and fold2
identifier module module
body::=
branch. .. branch
factor * ... * factor
{ label : factor; ... ; label : factor }
branch::=
| data[of factor * ... * factor]
factor ::=
atom sort
[arbitrary Objective Caml typ¢
[specifier] [typevarg type[container]
< [typevarg type>
<(typebinds sort, ..., sort) body>
specifier::=
inner
outer
neutral
typevars::=
typevar
(typevas ..., typevar)
typevar::=
" lid
sort, type, label:=
lid
data, module:=
uid
container map fold, fold2 ::=
gid

Figure 1. Syntax of specifications

with map fold, andfold2 functions, whose types must be

map : Vaf.(a — () — at— gt
fold : Vaf.(a—f—a)—a— ft—a«
fold2 : Vaf.(a—f—f—a)—a—ft—ft—a

The semantics of thenap and fold operations is standard and will not be repeated Hetd2 should iter-
ate over two containers simultaneously, in a synchronized manner. It should fail, by raising the exception
valid_argument if the two containers have different structure — for instance, in the case of lists, if the two lists
have distinct lengths.

The names of these three functions must be supplied as part of the declaration. The cdistiaamehsption
are predefined (and cannot be redefined).

< ldentifier module declarationg\n identifier module declaration specifies the name of an Objective Caml
module, whose signature must BéphaLib.Signatures.ldentifieThis module is adopted as the definition of
identifiers. Itis provided as a parameter to the funéiphalLib.Atom.Maké order to produce implementations
of atoms. At most one identifier module declaration can appear in a specification. If none appears, then the
default implementatioAlphaLib.Atom.Strindgs used. In this default implementation, identifiers are strings, and
fresh identifiers are generated, when needed, by appending the decimal representation of an integer counter.

Body The body (that is, the right-hand side) of a type declaration can consisguwhdypeatuple typeor a
record type A sum type consists of a list of branches. A tuple type consists of a list of factors. A record type
consists of a list of factors, each of which carries a label.

Branch Each branch in a sum type consists of a data constructor, optionally followed by a list of factors.

Factor A factor is anatom type a foreign type atype referenceor anabstraction typeNot all factors are
allowed in all contexts: some factors are valid only in the declaration of an expression type, while others are
valid only in the declaration of a pattern type.

< Atom typesAn atom type consists of the keywoatlom, followed by a sorsort It can appear both within
expression types and within pattern types. Within an expression type, it is interpreted as a referring occurrence.
Within a pattern type, it is interpreted as a binding occurrence; furthermore, in that case, gwrtsorist be
mentioned in théinds clause for that type.

© Foreign typesA foreign type is an arbitrary Objective Caml type expression, enclosed within square
brackets. This expression can refer to any of the Objective Caml type variables currently in scope. For purposes
of a-conversion, values of foreign type are ignored entirely: that is, they are considered not to contain any
binding or referring occurrences of atoms. Values that contain modifiable state, or whose structure is not known,
because it is represented by a type variable, are typically to be considered foreign. Foreign types are valid within
expression and pattern types.

o Type referencesA type reference primarily consists of (the name of) a type, which must be defined
elsewhere in the specification. It is optionally preceded with a sequence of type variables, and optionally
followed by a container. Type references can appear inside expression and pattern types. When within an
expression type, no specifier must be given, and the reference must be again to an expression type. When
within a pattern type, if a specifier is given, then the reference must be to an expression type: that is, specifiers
can be thought of as end-of-abstraction marks. Otherwise, it must be again to a pattern type.

< Abstraction typesAbstraction types are valid within expression types only. There are two syntactic forms.
In the simpler form, inside the angle brackets is (the name of) a type, which must be defined elsewhere in the
specification and must be a pattern type. It is optionally preceded with a sequence of type variables.

We stress that the contents of an abstraction must be antype it cannot be, for instance, an anonymous
product of factors. This is because a name is needed for the generated functions that allow creating and opening
this abstraction.

The inconvenience of having to refer to a type name is somewhat relieved by the second, more elaborate form
of abstraction types. In that form, a pattern type is introduced on the fly, and becomes the body of the abstraction.
In other words, the definition of a pattern type is inlined into the abstraction. For instance, the abstraction type

<(lambdabinds var) atom var * inner term >
is syntactic sugar for the abstraction type

< lambda>
together with the type declaration

type lambdabinds var = atom var * inner term

Specifier A specifier precedes a reference to an expression type within a pattern type. In other words, a
specifier marks the end of an abstraction. If the specifi@atirigr, then the expression is considered as lying
insidethe scope of the abstraction. If it dauter, then the expression is considered as lydngsidethe scope

of the abstraction. When the expression contains, directly or indirectly, no atoms of the sorts bound by the
abstraction, then it makes no difference whether it lies inside or outside the scope of the abstraction. In that
case, and only in that case, theutralspecifier must be used. In other words, use oftietralspecifier is only
permitted, and is required, in situations whareer andouter would have the same meaning.

5. Generated Code

The compilation unit produced byd@nl out of a specification file contains a number of Objective Caml module,
type, value, and class definitions.

Modules For each atom sort declared in the specification, an “atom” module is generated. Each such module
is produced by applying the functéiphaLib.Atom.Makéo theldentifiermodule. (The identity of thidentifier
module can be controlled via &entifier module declaration.) As a result, every “atom” module has signature

AlphaLib.Signatures.Atomith type identifier= Identifier.t

Each “atom” module defines an abstract type of atoms and provides a number of operations involving atoms,
sets and maps over atoms, maps of atoms to identifiers, and substitutions of atoms for atoms. The definition of
the signaturélphaLib.Signatures.Atoan be found in AppendiA.

Types For each typée declared in the specificatiothreetype definitions are produced, respectively called the
raw, internal, andflat versions.

The raw version, namedRaw.t is concrete: atoms are identifiers, and abstractions are transparent—that is,
the angle brackets are erased. The raw version is intended for use by parsers and pretty-printers.

Theinternal version, named, is abstract: atoms are abstract values of the appropriate “atom” module, and
abstractions are opaque—that is, they are represented by abstract types. More precisely, in the internal version,
for each pattern typa that appears within the body of an abstractiovg type definitions are produced: one,
namedopaqueu, is abstract, while the other, nameadis transparent. Functionsréate u and open.u) are
provided to convert back and forth between the two forms. The internal version is recommended for most uses.

Theflat version, namedFlat.t, offers abstract atoms, like the internal version, and transparent abstractions.
One can think of it as a variant of the internal version in which all abstractions have been opened, once and
for all, while guaranteeing that “all bound names are distinct”. The flat version is intended for use in some
applications where initial distinctness of bound names is sufficient, so that “workingatpdaversion” is not
really required. In such cases, it can be more convenient than the internal version.

Functions are provided to convert back and forth between the raw and internal versiomspgeet and
exportt) and between the internal and flat versions (&en_t andunflattent).

Values For each expression tygetwo functionsimport_t andexportt allow converting between raw and
internal forms, that is, betweddaw.tandt. The functionmport_t expects one or several mappings of identifiers

to atoms—one mapping per relevant sort. Conversdgportt expects one or several mappings of atoms to
identifiers. These mappings are required when the terms to be converted contain free atoms or free identifiers.
When converting closed terms, empty mappings can be provided.

For each expression typetwo functionsflatten_t andunflattent allow converting between internal and flat
forms, that is, betweehandFlat.t. The functionflatten.t recursively traverses its argument, opening every
abstraction that it encounters. The result is a “flat” term, that is, a term within which all abstractions are
transparent, and all bound atoms are guaranteed to be distinct. (Of course, it is possible to manually construct
“flat” terms wherenot all bound atoms are distinct—it is up to you to be careful.) Similarly, the function
unflattent recursively traverses its argument, re-creating opaque abstractions where needed.

For each type, a functionequalt offers an equality test, up te-conversion. That isgqualt accepts two
terms of type and tells whether they are-variants of one another.

For each type, a functionsubstt allows applying one or several substitutions of atoms for atoms to a term
of typet—one substitution per relevant sort.

For each expression typea functionfree_t returns the sets of atoms that appear free in a term—again, one
set per relevant sort. For each pattern typa functionbound.u returns the sets of atoms that appear in a
binding position in a term. A more complex functibound free_u returns the sets of atoms that appear in a
binding position, free in inner scope, or free in outer scope.

For each pattern typethat appears within the body of an abstraction, two functeate u andopen.u are
produced, which convert back and forth betweeandopaqueu. The functioncreate.u has no runtime effect,
while open.u “freshens” all bound atoms: that is, it replaces them with fresh atoms. This enforces the informal
convention that “bound names and free names must be chosen distinct”.

For each pattern typethat appears within the body of an abstraction, a funatjpen2 u is produced, which
allows openingwo opaque abstractions at once, while automatically ensuringhbatbound atoms coincide
Of course, this is possible only if the two values of tyggaque u that are supplied topen2u have identical
structure, that is, itheir bound atoms are initially in a bijectionf no such bijection existgpen2.u fails and
raises the exceptioBpen2 In the simple case where the pattern tydginds exactly one atonopen2u never
fails—its use is equivalent, in that case, to two independent catipéa_u, followed with an explicit renaming
operation. In more complex cases, the definitiomabuld involve products or sums, so thabinds multiple
atoms or a variable number of atoms. In these cag®mn2u can in general fail.

Classes In order to help modularly define transformations and traversals over terama| @roduces two
classes, nametiapandfold.

The classmap contains one method for every type, data constructor, and record label in the specification.
The method associated with typéas typet — t. Its default implementation returns a copy of its argument.

The copy is created viself-calls to the relevant methods for copying sub-terms, copying record fields and/or
copying data constructor applications. The method associated with a data confirbatthe same type &s

Its default implementation appli€sto a copy of its argument; again, the copy is obtained through appropriate
self-calls. The method associated with a record fielaf type = has typer — 7. Its default implementation
returns a copy of its argument, again created via approméatealls.

If one were to create an object of classpvia new map each of its methods would behave as an identity
function, whose argument is traversed and copied without change. The point is that it is now easy to create a sub-
class ofmapwhere one or several methods are overridden. This results in application-specific behavior at certain
nodes and default behavior at every other node. For instance, capture-free substitution of terms for variables can
be defined in a few lines of code using this technique. This is illustratéenins /poplmark/core.ml.

The clasdold is very similar tomap except terms are only traversed, not copied. An accumulator is threaded
through every call, that is, accepted and returned by every method. The class is parametric in the type of the
accumulator.

sort var

type 'a annotatedexpression =
annotation: ['a ref |;
body: 'a expression

}

type 'a expression =
| EVarof atom var
| EAbsof <(lambdabinds var) atom var * inner 'a annotatedexpression >
| EAppof ’a annotatedexpressions 'a annotatedexpression

Figure 2. Annotating terms with mutable information

6. Questions and Answers

o How do | run experiments in the toplevel loop?Create a specification filtoo.m1a and compile it, using
Caml and Objective Caml, so as to credis . cmi andfoo.cmo. Then, you can exploit the toplevel loop by
entering the following directives:

#use "topfind";;
#require "alphalLib";;
#load "foo.cmo";;

If (through its prologue) your specification depends on other Objective Caml modules, you must load them
before attempting to loatlo . cmo.
If you want to check which operations are available over atoms, type

module V = Foo.Var;;

Assuming your specification contains the declaratisort var”, this causes the signature of the corresponding
“atom” module to be displayed.

< What about cyclic terms? Abstract syntax trees are not meant to be cyclic. When usiaglCthe only
way of creating cyclic terms is to exploit Objective Caml’s libdeal rec construct. Don’t do it.

< What about sharing? If your terms happen to have shared sub-terms, this is fine, but all sharing will be
lost when the terms are copied—that is, when they are freshened, converted, renamed, etc.

< What about marshaling? Marshaling and unmarshaling of terms in internal form eiaput valueand
input_valueis fine, as long as the terms ariesed that is, have no free atoms. Marshaling a term that contains
free atoms makes no sense, because the identity of an atom is not preserved across runtime sessions. That is,
two conceptually distinct atoms that originate in different sessions could accidentally happen to receive the same
identity.

If you must marshal an open term, then you can do so, in an indirect way, by closing it. You could, for instance,
enclose it within a toplevel abstraction, where each formerly free atom becomes bound and is explicitly paired
with a none-varying label of your own making, such as a string or an integer. Because the atom becomes
bound, its identity vanishes, but information about its meaning can be encoded in the label.

< How do | annotate nodes with mutable information?The trick is to use an Objective Canef cell inside
square brackets. It is even possible to abstract over the type of the desired information, by introducing a type
parametetra. A sample specification that uses this technique appears in Rigure

o My lexer accepts identifiers that contain underscores and numerals. Wouldn’t that interact badly
with the basenameand combinefunctions of the default Identifier module (Appendix A)? No, this is fine.
An identifier such asX__3" is turned by themport functions into an atom of basenameé.“When this atom
is later supplied to aexportfunction, we obtain an identifier that begins witk,'followed by “__", followed

’

by whatever integer is required to make the whole identifier unique. The result could b&”jostperhaps
“x__24'.

In other words, dropping the.“3"in “ x__3" when computing an atom’s basename doesn't affect the fact that
the atom is created unique. Furthermore, distinct atoms are mapped to distinct identifiersxpottiieinctions.

The basename mechanism is supposed to help these functions produce suggestive identifiers, but does not affect
their soundness.

In fact, it would be possible to produce an implementation ofltlemtifier signature (Appendix) where
basenamés a constant function, that is, where no basename information is recorded. In that case, the identifiers
produced by thexportfunctions would be isomorphic to integers. The compositioimgfort andexportwould
then act as a “name mangler”. This could be useful when trying to obfuscate code!

A. Module AlphaLib.Signatures
This module defines a couple of signatures that specify the interaction bedpdatbiband user programs.

A.1 Signature AlphaLib.Signatures.ldentifier

This signature defines the operations that an implementation of identifiers must provide in order to appear in an
identifier module declaration.

Identifiers are usually human-readable. In fact, the default implementation of identifiers, which is automati-
cally supplied by @ml when noidentifier module declaration is made, equates identifiers with strings.

An implementation of atoms can be built on top of any implementation of identifiers via the internal functor
AlphaLibAtomMake This functor application is automatically performed byr@l in order to produce each of
the “atom” modules (one per sort).

In order to implement this signature, one must isolate a strict subset of identifiers, which we refer to as
“base” identifiers. There must exist a function, referred tba@asenamethat maps arbitrary identifiers to base
identifiers. This function does not have to (and usually cannot) be injective. (A function is injective when it
maps distinct inputs to distinct outputs.) Nevertheless, the more information it preserves, the better. Conversely,
there must exist an injective function, referred tcwambine that maps a pair of a base identifier and an integer
value to an identifier.

Internally, every atom records the image throligisenamef the identifier that it originally stood for. This
base identifier plays no role in determining the identity of the atom: that is, it is not used when comparing two
atoms. It is kept around for use when the atom is converted back to an identifier. At this point, it is combined,
via combine with a unique integer, in order to obtain suitably fresh identifier.

If basenamandcombineare properly chosen, then the final identifier that is printed “resembles” the one that
was originally found. More precisely, it is desirable that the next two laws be satisfied:

basenamécombine identifier)i = identifier
combine identified = identifier

The first law states that the information added by combining an identifier with an intégexactly the
information that is lost when applyingasenameThe second law states that combining the integer 0 with
an identifier should have no effect. This is exploited to avoid needless renamings.

The defaultimplementation of identifiers as strings defines base identifiers as strings that do not end with two
underscore characters and a nhumber. A base identifier and an integer value are combined simply by appending
__, followed with a decimal representation of the latter, to the former. In practice, this means that the identifier
x will be successively renamed inkpx__1, Xx__2, x__3, and so on.

module type Identifier = sig
tis the type of identifiers.
typet

Identifiers must be comparable. As usual in Objective Canhpare id1 id2nust return a negative integer
if id1is less thand2, a positive integer ifd2 is less thandl, and zero otherwise.

val compare: t — t — int
basenamandcombineare described above.

val basename t — t
val combine: t — int— t

The sub-moduléMap provides maps whose keys are identifiers. It is usually produced by applying the
standard library functoMap.Maketo the typet and the functiorcompareabove. This sub-module is used by
the functions that convert back and forth between raw and internal forms, that is, between atoms and identifiers.

module Map : Map.Swith type key = t

end

A.2 Signature AlphaLib.Signatures.Atom

This signature specifies the operations that every “atom” module provides. These operations are grouped into
several sub-modules that provide:

e basic operations on atoms;

e sets of atoms;

e maps of atoms to arbitrary data;

e maps of atoms to identifiers;

e substitutions of atoms for atoms.

module type Atom = sig

The typeidentifieris the type of the identifiers on top of which this implementation of atoms is built.
type identifier

The sub-modulétomoffers an abstract type of atoms. Atoms are abstract entities that support two (classes
of) operations, namely creation of fresh atoms and comparison of two atoms.

Every atom carries a unique integer, which can be viewed as its identity. This integer is used in comparisons.
A global integer counter is maintained and incremented when fresh atoms are created.

Every atom also carries a base name, that is, an identifier. This identifier is not in general unique, and
is not part of the atom’s identity. It is used when converting atoms back to identifiers: see, for instance,
AtomldMapadd

When a fresh atom is created, its base name is taken either from an existing identifier or from an existing
atom. Two functionsfreshbandfresha are provided for this purpose.

module Atom : sig
tis the type of atoms.
typet
The callfreshb identifieproduces a fresh atom whose base name is thideaofifier.
val freshb: identifier — t
The callfresha aproduces a fresh atom whose base name is that of
val fresha: t — t

Atoms can be tested for equality, for ordering, and hashed. The user is warned against careless use of
compareandhash Atoms are renamed duringconversion, which affects their relative ordering and their hash
code. Itis fine to use these operations as long as one guarantees that no renaming takes place.

valequal: t — t — bool
val compare: t — t — int
val hash: t — int

It is possible to retrieve an atom’s identity and base name. There is in general no good reason of doing so,
except for debugging purposes.

val identity: t — int
val basename t — identifier

The exceptiordnknownis raised byAtomldMaplookup

exception Unknownof t
end
The sub-modulétomSebffers a representation of finite sets of atoms.
module AtomSet: sig

tis the type of sets of atoms.

typet
type element= Atom.t

emptyis the empty set.

val empty: t

singleton ais the singleton sefa}.

val singleton: element— t

add x sis ({x} U 9).

val add: element— t — t

union sl s4s (s1uU s2.

valunion: t - t — t

inter s1 s2is (s1Ns2).

valinter: t -t — t

diff s1 s2is (s1)\ s2).

valdiff: t -t — t

mem a 3s true if and only if ais a member o§.
val mem: element— t — bool

is_empty gs true if and only if sis the empty set.
val is_empty: t — bool

disjoint s1 sds true if and only if the setslands2are disjoint, that is, if and only if their intersection is
empty.

val disjoint: t — t — bool

equal sl s2s true if and only if slands2are extensionally equal, that is, if and only if they have the same
members.

valequal: t — t — bool

subset s1 s true if and only if slis a subset 082, that is, if and only if every member aflis also a
member ofs2

val subset (t — t — bool)

The calliter f s has the effect of applying the functidm turn to every member of

val iter : (element— unit) — t — unit

The callfold f s accuhas the effect of applying the functidnin turn to every member of and to
an accumulator whose value, threaded through the calls, is iniiatty Its result is the final value of the
accumulator.

valfold: (element— o — a) -t - a — «
cardinal sis the cardinal of the set
val cardinal: t — int
choose seturns an arbitrarily chosen elementspif sis nonempty, and raiségot_foundotherwise.
val choose t — element
compareis an ordering over sets.
val compare: t — t — int
end

The sub-modulé&tomMapoffers a representation of finite maps whose keys are atoms and whose data can
have arbitrary typer.

module AtomMap : sig
keyis the type of atoms.

type key =
Atom.t

a tis the type of maps of atoms to data of type

type at

emptyis the empty map.

val empty: ot

singleton a ds the singleton map that maps ataerto datumd.

val singleton: key — a — ot

add a x mis the map that maps atoato datumd and elsewhere behaves like
valadd: key - a — at — «at

strict_add a x nraisesStrict aif ais in the domain o and otherwise returredd a x m
exception Strict of key

val strict_add: key - a — at — at

union m1 m3as the map that behaves like2wherem?2is defined and elsewhere behaves liké In other
words, the bindings im2take precedence over thosenirl

valunion: at — at — at

lookup a mreturns the datum associated with atarin the mapm, if defined, and raises the exception
Not_foundotherwiselookupis also known a&ind.

val lookup: key — at — «
val find: key — at — «

is_empty mis true if and only if mis the empty map.
val is_empty: ot — bool

map f mis the map obtained by composing the functfosith the mapm, that is, the map that maps an
atomato (f d) whenmmapsato d.

valmap: (« — () — at — gt

mapi f mis the map that maps an atano (f a d) whenm mapsato d.
val mapi: (key - a — () — at — gt

iter f mappliesf in turn to each binding in the map.

valiter : (key - a — unit) — at — unit

fold f m accuappliesf in turn to each binding in the map, threading an accumulator through the sequence
of calls.

valfold : (key - o« — 8 — 3) - at - — (3

cardinal mreturnsm's cardinal, that is, the number of keys it binds, or, in other words, the cardinal of its
domain.

val cardinal: at — int
choose mreturns an arbitrarily chosen bindingnm if mis nonempty, and raisé¢ot_foundotherwise.
val choose at — key x «

end

The sub-modulétomldMapoffers finite maps of atoms to identifiers, with the property that every atom is
mapped to a distinct identifier. This invariant is enforced by having the library pick a unique identifier when a
new atom is added to the domain of the map. That is, the client does not control which identifiers are picked.

module AtomldMap : sig
keyis the type of atoms.

type key =
Atom.t

tis the type of maps.
type t

emptyis the empty map.
val empty: t

add a mis a map that maps the ataato a unique identifier (that is, an identifier not in the codomain of
m) and elsewhere behaves like The base name @fis used when picking this identifier. The at@must not
be a member of the domain of

valadd: key —» t — t
add_set s mis the map obtained by successivatydng every member of the atom seto the mapm.
val add_set: AtomSet.t— t — t

lookup a nreturns the identifier associated with the atoim the mapm, if defined, and raises the exception
AtomUnknownotherwiselookupis also known a&ind.

val lookup: key — t — identifier
val find: key — t — identifier

iter f mappliesf in turn to each binding in the map.
valiter : (key — identifier — unit) — t — unit

fold f m accuappliesf in turn to each binding in the map, threading an accumulator through the sequence
of calls.

val fold : (key — identifier - g —) -t - 0 —
end

The sub-modulé&ubstoffers substitutions of atoms for atoms. These are total mappings of atoms to atoms
that behave as the identity outside of a finite set of atoms, known as their domain.

module Subst: sig
tis the type of substitutions.
type t
id is the identity substitution.
valid: t
is_id substis true if and only if substis the identity substitution.
valis_id: t — bool
singleton a bs the singleton substitution that maps atato atomb.
val singleton: Atom.t — Atom.t — t
add a b subsis the substitution that maps atano atomb and elsewhere behaves ligkebst
val add: Atom.t —» Atom.t— t — t

union substl substi2 the substitution that behaves likabst2on its domain and elsewhere behaves like
substl In other words, the bindings subst2ake precedence over thosesubstl

valunion: t - t — t

compose substl subs2the composition ofubstlwith subst? that is, the substitution that maps every
atoma to substl(subst2(a)).

valcompose t — t — t

freshen s subsis a substitution that maps every atamin the sets to a fresh atom (obtained via
Atomfresha g and elsewhere behaves likabst

val freshen: AtomSet.t— t — t

lookup a subsis the image o throughsubst It is never undefined, since substitutions are viewed as total
mappingslookupis also known adind.

val lookup: Atom.t — t — Atom.t
val find: Atom.t — t — Atom.t

freshends undocumented.
val freshen2 Atomt— t — Atomt— t — t x t
end

end

References
[1] Francois PottierAn overview of Gxml. Submitted, June 2005.

http://cristal.inria.fr/~fpottier/publis/fpottier-alphacaml.pdf

	Foreword
	Terminology
	Usage
	Syntax of specifications
	Generated Code
	Questions and Answers
	Module AlphaLib.Signatures
	Signature AlphaLib.Signatures.Identifier
	Signature AlphaLib.Signatures.Atom

