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What about:
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C#
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Python

bad ok good good good

JS

bad bad →ok ok bad good

Good < Popular
OCaml /∈ Popular (yet)
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What makes a successful language?

Maybe something like:

Well-suited library (sometimes the only available library)

Consistent/composable library (only one string type, only one
iteration type, only one exception hierarchy. . . )

Extensibility (new kinds of streams may be created, virtual �le
system. . . )

Tutorials (which should be trivial to �nd)
either

Fun factor
or

Public relations (either a company or open-source buzz)
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And in OCaml?

Well-suited library Low-level library in a high-level language.
Minimal library su�cient for testing, not necessarily for
development.

Consistent/composable library How do I convert a stream to a
list? How do I map a stream or an I/O or a hashtable?
How should I represent Unicode strings?

Extensibility Camlp4/Camlp5 ok. But how do I add new kinds
of I/O? How do I create new streams?

Tutorials Whole-language tutorials ok. Task-speci�c languages
not so ok. Plus newbies need to �nd them.

Fun factor Oh, yeah. Despite competition with Haskell.

Public relations Insu�cient. Despite competition with Haskell.
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What can we improve?

Well-suited library Build a high-level library.

Consistent/composable library Add base abstractions & data
structures, uniformize interfaces.

Extensibility Liberate the base data structures!

Tutorials Improve documentation.

Fun factor Can always be improved. Cabal?

Public relations OCaml Developer Days, OCamlCore.org,
books, teaching, etc.
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Our objectives

A distribution of OCaml with

I Newbie-oriented documentation.

I More comfortable syntax.

I Consistent and high-level API.

I Extensible data structures.

I More fun!
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How?

API Existing libraries + uniformization �glue layer�.

Language Syntax extensions, auto-loaded.

Toolchain Existing tools + transparent shell scripts.

Documentation Largely rewritten + new doclet.

Improve the user experience, don't reinvent the wheel!

Don't turn OCaml into Java!

Built on top of the Base library and ExtLib.
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Step 1

Objective Simplify and uniformize data structure access.

Objective Decrease need for multi-paradigm for simple
tasks.
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OCaml has
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data structure-based loops List.iter, List.fold_left,
List.fold_right, List.map. . .

built-in general loops let rec
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Enter enumerations

Overview Lightweight iterators, aka �like Stream.t, but
open�.

Operations foreach/iter, map, fold, scanl, filter,
flatten

Conversion List.enum/List.backwards/
Array.enum/Array.backwards/
Hashtbl.enum/Hashtbl.keys/Hashtbl.values/
String.enum/String.backwards/ . . .

Construction ( � ), ( �- ) , ( ∼∼∼ ), unfold, etc.

Source ExtLib, SDFlow, new stu�
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Exercise Count from 1 to 10.

1 -- 10

Exercise Print all elements between 1 to 10.

let print_intln x =

print_int x;

print_newline ();;

foreach ( 1 -- 10 ) print_intln
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Examples (2)

Exercise Print the square numbers of all odd numbers between
1 and 100, by decreasing order.

let square x = x * x

and odd x = x mod 2 = 1

in

foreach ( map square ( ( 100 --- 1 ) // odd) )

print_intln

Did I mention syntax extensions?

foreach [? x*x | x <- ( 100 --- 1 ); x mod 2 = 1]

print_intln
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Examples (3)

Exercise Keep only the vowels of �OCaml is too cool for
school�.

let too_cool = "OCaml is too cool for school" in

String.of_enum(

(String.enum too_cool) //

(function 'a'|'e'|'i'|'o'|'u'

|'A'|'E'|'I'|'O'|'U' -> true

| _ -> false))

Syntax extensions, again:

[? String : x | x <- String : too_cool ; vowel x]

where vowel = function 'a'|'e'|'i'|'o'|'u'

|'A'|'E'|'I'|'O'|'U' -> true

| _ -> false
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Other data structures

I Doubly-linked lists, defunctorized polymorphic maps,
multi-maps, dynamic arrays, lazy lists, defunctorized
polymorphic sets, ...

I Upgraded lists, arrays, big arrays, hashtables, queues,
stacks, maps, sets.

I Everything supports Sexplib, printing, enumerations, etc.

I Most things support comprehension.
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Channels are closed

Jan 30 00:50:25 <sanguinev> Is there a way to make an output_channel that just

accepts output and doesn't do anything?

Jan 30 00:51:23 <brendan> open_out "/dev/null" ?

Jan 30 00:54:00 <sanguinev> brendan: I am looking for something that won't require

a file/any specified location.

Jan 30 00:54:47 <Yoric[DT]> Shameless plug: with Batteries, it's possible.

Jan 30 00:55:14 <Yoric[DT]> (other than that, you could trick it with a pipe, but

that's much more complicated than /dev/null)

Jan 30 00:55:50 <sanguinev> Yoric[DT]: I am hoping for something nice and system

agnostic so I can run the same code on linux/unix/

mac OSx/cygwin...

...

Also, can't �lter/map/... on channels. Shameless plug #2:
channel #ocaml is open, though.
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What's going on?

OCaml's in_channel/out_channel are

I operating system-level

I tied to the Unix model

I closed.
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Enter input/output

Overview Drop-in replacement for in_channel/out_channel
operations.

Operations All the usual operations, plus i/o �lters, position,
callbacks, Unicode, auto-�ushing. . .

Conversion To/from enumerations, strings, �le names, sockets,
processes. . .

Construction File.open_in/open_out,
wrap_in/wrap_out. . .

Source ExtLib, OCamlNet, Camomile, more stu�
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Let's do it with Batteries

Exercise Let's implement cat with Batteries.

open IO, File

foreach (args ())

(fun s -> copy (open_in s) stdout)

or

foreach (args ()) **>

fun s -> copy (open_in s) stdout
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Let's do it with Batteries (2)

Exercise Now, let's implement a version of cat which prints
line numbers along with line contents.

open IO

foreach (args ()) (fun s ->

Enum.iteri

(Printf.printf "%d %s\n")

(File.lines_of s)

)

In this last version, a �le was automatically opened, read
(lazily), split into lines and closed.
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Going further

Exercise Add gzip-decompression.

open IO

foreach (args ()) (fun s ->

Enum.iteri

(Printf.printf "%d %s\n")

(lines_of (GZip.uncompress (File.open_in s)))

)

Exercise Count number of bytes read.

foreach (args ()) (fun s ->

let (inp , pos) = pos_in (File.open_in s) in

Enum.iteri

(Printf.printf "%d %s\n")

(lines_of (GZip.uncompress inp ));

Printf.printf "\tRead %d bytes\n" (pos ())

)

etc.
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I/O is open

Want to read from a string, a socket, an http connexion, etc?

Writing new inputs/outputs is easy.

val create_in:

read:(unit -> char) ->

input:( string -> int -> int -> int) ->

close:(unit -> unit) ->

input

val wrap_in:

read:(unit -> char) ->

input:( string -> int -> int -> int) ->

close:(unit -> unit) ->

underlying :(input list) ->

input
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The problem with strings

Strings are mutable, hence:

di�cult to trust

slooow to append.

Strings are arrays of char, hence:

confuse characters and bytes

have no clear notion of encoding.
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Introducing ropes

r"This is a UTF -8 encoded rope"

Overview Functional UTF-8 encoded text with O(ln(n))
concatenation but slower get.

Limitations About 700Mb in 32-bit, about 220Gb in 64-bit.

Operations All the operations of String except mutability.

Conversion Rope.of_latin1, Rope.of_uchar, ...

Notes Allocation optimized (with Camlp4!), immutable
implementation.
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Introducing string with capabilities

ro"... a read -only Latin -1 string";;

wo"... a write -only Latin -1 string";;

rw"... a read -write Latin -1 string";;

Overview Your usual strings, but with phantom types to ensure
read-only/write-only/read-write capability.

Operations All the operations of String.

Notes Optimized allocation for read-only strings.
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Exercise

Exercise From a string s, return the �rst 5 characters, skip the
next 3, then return the next 5 characters, the next 5 characters
and the rest of the string.

let hairsplit s =

open String in

let e = enum s in

[? List : of_enum (f e) | f <- List :

[take 5; skip 3 |- take 5; take 5; identity ]]

Exercise Same thing, but with Unicode.

let hairsplit s =

open Rope in

let e = enum s in

[? List : of_enum (f e) | f <- List :

[take 5; skip 3 |- take 5; take 5; identity ]]
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Text features, too

All these data structures support

I iteration, map, folds, �lters, replacement, enumeration,
construction from enumeration, searching from left to
right, from right to left, from a given index, chopping,
trimming, stripping, upper/lowercasing, splitting, slicing,
splicing, etc.

I printing

I transcoding

I pattern-matching.
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Enough for one day

Let's not detail

I uniform number modules for functorization

I safe integers

I enumerable signature

I on-line help

I documentation by topics

I mostly �at module-space

I overlay modules for labels or exceptionless error
management

I the Future module

I printing

I marshaling

I substrings

I path management

I package management

I calling the compilers from a module

I . . .
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Status

Latest version Alpha 3 for OCaml 3.10/3.11 being
bugsquashed.

Site http://batteries.forge.ocamlcore.org.

License Mostly LGPL + LE, bits in BSD.

Availability Tarball, GODI package.

Tools ocaml, ocamlc, ocamlopt, ocamlcp, ocamlbuild.

Size 27,650 loc signatures, 24,407 loc implementations.

Next version Beta 1, expected ca. March.

Testing needed!

Applications Extrapol static analyzer for C.

http://batteries.forge.ocamlcore.org
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Batteries for new apps

Larger standard library No more reimplementing lazy lists or
standard operators or trivial list functions.

Higher-level library More composability, more extensibility, etc.

Syntactic sugar More readable algorithms.

Fun!
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Documentation More examples, on-line help.

Uniformity Modules follow more rigorous patterns and should
be easier to learn.

Purity Going imperative is less often necessary.

Fun!
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Batteries for new libraries

Conventions Standard signatures, obsolete primitives, etc.

Better composition

Fun!

Essentially, please consider compatibility with Batteries for your
next libraries.
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Problems to solve

I Huge binary size.

I Toplevel pretty-printers.

I Confusing error messages.

I Operator precedence for /, ..

I One-tarball distribution? Symbiosis?
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In the future

I More OCamlNet (β).

I Preferences (β).

I Pa-do (β).

I Logging.

I Relooking the documentation with iframes.

I Locales.

I Optimizations (eg strings).

I CoThreads.

I oUnit?

I CamlGraph?

I AST/bytecode generation?

I Functional unparsing with Camlp4 support?

I Graphics? Cairo? Some UI toolkit?

I OS integration?

I Don't hesitate to use our Request for Features tracker.

I And our bug tracker, of course.
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Thank you

Questions?
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If you're. . .

I A PhD, a PhD student or a future PhD student.

I Into OCaml, similar languages or Coq.

I Into compilers, concurrency, distributed systems,
semantics, proof of programs.

I Into language tools, language front-ends, language design.

I Interested by safe programming for the web.

Contact me/us: MLState may have a job/PhD/internship for
you.
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