
OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

OCaml, Batteries Included

OCaml Meeting 2009

David Teller1, Edgar Friendly, Stefano Zacchiroli2, Gabriel
Scherer, Jérémie Dimino . . .

1
LIFO, Université d'Orléans ⇒ MLState

2
PPS, Université Paris 7

February 4th, 2009

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Before we start

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What makes a good language?

Safety

Expressivity

Composability

Syntax

Simplicity

Fun factor

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What makes a good language?

Safety OCaml
√

Expressivity

Composability

Syntax

Simplicity

Fun factor

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What makes a good language?

Safety OCaml
√

Expressivity OCaml
√

Composability

Syntax

Simplicity

Fun factor

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What makes a good language?

Safety OCaml
√

Expressivity OCaml
√

Composability OCaml
√

Syntax

Simplicity

Fun factor

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What makes a good language?

Safety OCaml
√

Expressivity OCaml
√

Composability OCaml
√

Syntax OCaml
√

Simplicity

Fun factor

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What makes a good language?

Safety OCaml
√

Expressivity OCaml
√

Composability OCaml
√

Syntax OCaml
√

Simplicity OCaml
√

Fun factor

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What makes a good language?

Safety OCaml
√

Expressivity OCaml
√

Composability OCaml
√

Syntax OCaml
√

Simplicity OCaml
√

Fun factor OCaml
√

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Popular languages

What about:

Safe Expressive Composable Syntax Fun

Java

ok ugly bad ugly ugly

C#

ok bad →ok ok bad ok

VB

bad bad bad ugly ugly

Python

bad ok good good good

JS

bad bad →ok ok bad good

Good < Popular
OCaml /∈ Popular (yet)

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Popular languages

What about:
Safe

Expressive Composable Syntax Fun

Java ok

ugly bad ugly ugly

C# ok

bad →ok ok bad ok

VB bad

bad bad ugly ugly

Python bad

ok good good good

JS bad

bad →ok ok bad good

Good < Popular
OCaml /∈ Popular (yet)

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Popular languages

What about:
Safe Expressive

Composable Syntax Fun

Java ok ugly

bad ugly ugly

C# ok bad →ok

ok bad ok

VB bad bad

bad ugly ugly

Python bad ok

good good good

JS bad bad →ok

ok bad good

Good < Popular
OCaml /∈ Popular (yet)

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Popular languages

What about:
Safe Expressive Composable

Syntax Fun

Java ok ugly bad

ugly ugly

C# ok bad →ok ok

bad ok

VB bad bad bad

ugly ugly

Python bad ok good

good good

JS bad bad →ok ok

bad good

Good < Popular
OCaml /∈ Popular (yet)

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Popular languages

What about:
Safe Expressive Composable Syntax

Fun

Java ok ugly bad ugly

ugly

C# ok bad →ok ok bad

ok

VB bad bad bad ugly

ugly

Python bad ok good good

good

JS bad bad →ok ok bad

good

Good < Popular
OCaml /∈ Popular (yet)

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Popular languages

What about:
Safe Expressive Composable Syntax Fun

Java ok ugly bad ugly ugly
C# ok bad →ok ok bad ok
VB bad bad bad ugly ugly
Python bad ok good good good
JS bad bad →ok ok bad good

Good < Popular
OCaml /∈ Popular (yet)

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Popular languages

What about:
Safe Expressive Composable Syntax Fun

Java ok ugly bad ugly ugly
C# ok bad →ok ok bad ok
VB bad bad bad ugly ugly
Python bad ok good good good
JS bad bad →ok ok bad good

Good < Popular

OCaml /∈ Popular (yet)

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Popular languages

What about:
Safe Expressive Composable Syntax Fun

Java ok ugly bad ugly ugly
C# ok bad →ok ok bad ok
VB bad bad bad ugly ugly
Python bad ok good good good
JS bad bad →ok ok bad good

Good < Popular
OCaml /∈ Popular (yet)

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What makes a successful language?

Maybe something like:

Well-suited library (sometimes the only available library)

Consistent/composable library (only one string type, only one
iteration type, only one exception hierarchy. . .)

Extensibility (new kinds of streams may be created, virtual �le
system. . .)

Tutorials (which should be trivial to �nd)
either

Fun factor
or

Public relations (either a company or open-source buzz)

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What makes a successful language?

Maybe something like:

Well-suited library (sometimes the only available library)

Consistent/composable library (only one string type, only one
iteration type, only one exception hierarchy. . .)

Extensibility (new kinds of streams may be created, virtual �le
system. . .)

Tutorials (which should be trivial to �nd)

either

Fun factor
or

Public relations (either a company or open-source buzz)

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What makes a successful language?

Maybe something like:

Well-suited library (sometimes the only available library)

Consistent/composable library (only one string type, only one
iteration type, only one exception hierarchy. . .)

Extensibility (new kinds of streams may be created, virtual �le
system. . .)

Tutorials (which should be trivial to �nd)
either

Fun factor
or

Public relations (either a company or open-source buzz)

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

And in OCaml?

Well-suited library Low-level library in a high-level language.
Minimal library su�cient for testing, not necessarily for
development.

Consistent/composable library How do I convert a stream to a
list? How do I map a stream or an I/O or a hashtable?
How should I represent Unicode strings?

Extensibility Camlp4/Camlp5 ok. But how do I add new kinds
of I/O? How do I create new streams?

Tutorials Whole-language tutorials ok. Task-speci�c languages
not so ok. Plus newbies need to �nd them.

Fun factor Oh, yeah. Despite competition with Haskell.

Public relations Insu�cient. Despite competition with Haskell.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

And in OCaml?

Well-suited library Low-level library in a high-level language.
Minimal library su�cient for testing, not necessarily for
development.

Consistent/composable library How do I convert a stream to a
list? How do I map a stream or an I/O or a hashtable?
How should I represent Unicode strings?

Extensibility Camlp4/Camlp5 ok. But how do I add new kinds
of I/O? How do I create new streams?

Tutorials Whole-language tutorials ok. Task-speci�c languages
not so ok. Plus newbies need to �nd them.

Fun factor Oh, yeah. Despite competition with Haskell.

Public relations Insu�cient. Despite competition with Haskell.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

And in OCaml?

Well-suited library Low-level library in a high-level language.
Minimal library su�cient for testing, not necessarily for
development.

Consistent/composable library How do I convert a stream to a
list? How do I map a stream or an I/O or a hashtable?
How should I represent Unicode strings?

Extensibility Camlp4/Camlp5 ok. But how do I add new kinds
of I/O? How do I create new streams?

Tutorials Whole-language tutorials ok. Task-speci�c languages
not so ok. Plus newbies need to �nd them.

Fun factor Oh, yeah. Despite competition with Haskell.

Public relations Insu�cient. Despite competition with Haskell.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

And in OCaml?

Well-suited library Low-level library in a high-level language.
Minimal library su�cient for testing, not necessarily for
development.

Consistent/composable library How do I convert a stream to a
list? How do I map a stream or an I/O or a hashtable?
How should I represent Unicode strings?

Extensibility Camlp4/Camlp5 ok. But how do I add new kinds
of I/O? How do I create new streams?

Tutorials Whole-language tutorials ok. Task-speci�c languages
not so ok. Plus newbies need to �nd them.

Fun factor Oh, yeah. Despite competition with Haskell.

Public relations Insu�cient. Despite competition with Haskell.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

And in OCaml?

Well-suited library Low-level library in a high-level language.
Minimal library su�cient for testing, not necessarily for
development.

Consistent/composable library How do I convert a stream to a
list? How do I map a stream or an I/O or a hashtable?
How should I represent Unicode strings?

Extensibility Camlp4/Camlp5 ok. But how do I add new kinds
of I/O? How do I create new streams?

Tutorials Whole-language tutorials ok. Task-speci�c languages
not so ok. Plus newbies need to �nd them.

Fun factor Oh, yeah. Despite competition with Haskell.

Public relations Insu�cient. Despite competition with Haskell.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

And in OCaml?

Well-suited library Low-level library in a high-level language.
Minimal library su�cient for testing, not necessarily for
development.

Consistent/composable library How do I convert a stream to a
list? How do I map a stream or an I/O or a hashtable?
How should I represent Unicode strings?

Extensibility Camlp4/Camlp5 ok. But how do I add new kinds
of I/O? How do I create new streams?

Tutorials Whole-language tutorials ok. Task-speci�c languages
not so ok. Plus newbies need to �nd them.

Fun factor Oh, yeah. Despite competition with Haskell.

Public relations Insu�cient. Despite competition with Haskell.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

And in OCaml?

Well-suited library Low-level library in a high-level language.
Minimal library su�cient for testing, not necessarily for
development.

Consistent/composable library How do I convert a stream to a
list? How do I map a stream or an I/O or a hashtable?
How should I represent Unicode strings?

Extensibility Camlp4/Camlp5 ok. But how do I add new kinds
of I/O? How do I create new streams?

Tutorials Whole-language tutorials ok. Task-speci�c languages
not so ok. Plus newbies need to �nd them.

Fun factor Oh, yeah. Despite competition with Haskell.

Public relations Insu�cient. Despite competition with Haskell.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What can we improve?

Well-suited library Build a high-level library.

Consistent/composable library Add base abstractions & data
structures, uniformize interfaces.

Extensibility Liberate the base data structures!

Tutorials Improve documentation.

Fun factor Can always be improved. Cabal?

Public relations OCaml Developer Days, OCamlCore.org,
books, teaching, etc.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What can we improve?

Well-suited library Build a high-level library.

Consistent/composable library Add base abstractions & data
structures, uniformize interfaces.

Extensibility Liberate the base data structures!

Tutorials Improve documentation.

Fun factor Can always be improved. Cabal?

Public relations OCaml Developer Days, OCamlCore.org,
books, teaching, etc.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What can we improve?

Well-suited library Build a high-level library.

Consistent/composable library Add base abstractions & data
structures, uniformize interfaces.

Extensibility Liberate the base data structures!

Tutorials Improve documentation.

Fun factor Can always be improved. Cabal?

Public relations OCaml Developer Days, OCamlCore.org,
books, teaching, etc.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What can we improve?

Well-suited library Build a high-level library.

Consistent/composable library Add base abstractions & data
structures, uniformize interfaces.

Extensibility Liberate the base data structures!

Tutorials Improve documentation.

Fun factor Can always be improved. Cabal?

Public relations OCaml Developer Days, OCamlCore.org,
books, teaching, etc.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What can we improve?

Well-suited library Build a high-level library.

Consistent/composable library Add base abstractions & data
structures, uniformize interfaces.

Extensibility Liberate the base data structures!

Tutorials Improve documentation.

Fun factor Can always be improved. Cabal?

Public relations OCaml Developer Days, OCamlCore.org,
books, teaching, etc.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What can we improve?

Well-suited library Build a high-level library.

Consistent/composable library Add base abstractions & data
structures, uniformize interfaces.

Extensibility Liberate the base data structures!

Tutorials Improve documentation.

Fun factor Can always be improved. Cabal?

Public relations OCaml Developer Days, OCamlCore.org,
books, teaching, etc.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Introducing

OCaml Batteries Included

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Our objectives

A distribution of OCaml with

I Newbie-oriented documentation.

I More comfortable syntax.

I Consistent and high-level API.

I Extensible data structures.

I More fun!

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Our objectives

A distribution of OCaml with

I Newbie-oriented documentation.

I More comfortable syntax.

I Consistent and high-level API.

I Extensible data structures.

I More fun!

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

How?

API Existing libraries + uniformization �glue layer�.

Language Syntax extensions, auto-loaded.

Toolchain Existing tools + transparent shell scripts.

Documentation Largely rewritten + new doclet.

Improve the user experience, don't reinvent the wheel!

Don't turn OCaml into Java!

Built on top of the Base library and ExtLib.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

How?

API Existing libraries + uniformization �glue layer�.

Language Syntax extensions, auto-loaded.

Toolchain Existing tools + transparent shell scripts.

Documentation Largely rewritten + new doclet.

Improve the user experience, don't reinvent the wheel!

Don't turn OCaml into Java!

Built on top of the Base library and ExtLib.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

How?

API Existing libraries + uniformization �glue layer�.

Language Syntax extensions, auto-loaded.

Toolchain Existing tools + transparent shell scripts.

Documentation Largely rewritten + new doclet.

Improve the user experience, don't reinvent the wheel!

Don't turn OCaml into Java!

Built on top of the Base library and ExtLib.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Step 1

Objective Simplify and uniformize data structure access.

Objective Decrease need for multi-paradigm for simple
tasks.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What is this for?

OCaml has

built-in specialized loops for, while

data structure-based loops List.iter, List.fold_left,
List.fold_right, List.map. . .

built-in general loops let rec

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What is this for?

OCaml has

built-in specialized loops for, while (very specialized, very
optimized)

data structure-based loops List.iter, List.fold_left,
List.fold_right, List.map. . .

built-in general loops let rec

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What is this for?

OCaml has

built-in specialized loops for, while (very specialized, very
optimized)

data structure-based loops List.iter, List.fold_left,
List.fold_right, List.map. . . (requires data
structure, not homogeneous among structures)

built-in general loops let rec

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What is this for?

OCaml has

built-in specialized loops for, while (very specialized, very
optimized)

data structure-based loops List.iter, List.fold_left,
List.fold_right, List.map. . . (requires data
structure, not homogeneous among structures)

built-in general loops let rec (general mechanism for
implementing loops)

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What is this for?

OCaml has

built-in specialized loops for, while (very specialized, very
optimized)

data structure-based loops List.iter, List.fold_left,
List.fold_right, List.map. . . (requires data
structure, not homogeneous among structures)

built-in general loops let rec (general mechanism for
implementing loops)

I Specialized loops are optimizations.

I let rec is (among other things) an extension mechanism.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Enter enumerations

Overview Lightweight iterators, aka �like Stream.t, but
open�.

Operations foreach/iter, map, fold, scanl, filter,
flatten

Conversion List.enum/List.backwards/
Array.enum/Array.backwards/
Hashtbl.enum/Hashtbl.keys/Hashtbl.values/
String.enum/String.backwards/ . . .

Construction (�), (�-) , (∼∼∼), unfold, etc.

Source ExtLib, SDFlow, new stu�

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Enter enumerations

Overview Lightweight iterators, aka �like Stream.t, but
open�.

Operations foreach/iter, map, fold, scanl, filter,
flatten

Conversion List.enum/List.backwards/
Array.enum/Array.backwards/
Hashtbl.enum/Hashtbl.keys/Hashtbl.values/
String.enum/String.backwards/ . . .

Construction (�), (�-) , (∼∼∼), unfold, etc.

Source ExtLib, SDFlow, new stu�

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Enter enumerations

Overview Lightweight iterators, aka �like Stream.t, but
open�.

Operations foreach/iter, map, fold, scanl, filter,
flatten

Conversion List.enum/List.backwards/
Array.enum/Array.backwards/
Hashtbl.enum/Hashtbl.keys/Hashtbl.values/
String.enum/String.backwards/ . . .

Construction (�), (�-) , (∼∼∼), unfold, etc.

Source ExtLib, SDFlow, new stu�

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Examples

Exercise Count from 1 to 10.

1 -- 10

Exercise Print all elements between 1 to 10.

let print_intln x =

print_int x;

print_newline ();;

foreach (1 -- 10) print_intln

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Examples

Exercise Count from 1 to 10.

1 -- 10

Exercise Print all elements between 1 to 10.

let print_intln x =

print_int x;

print_newline ();;

foreach (1 -- 10) print_intln

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Examples

Exercise Count from 1 to 10.

1 -- 10

Exercise Print all elements between 1 to 10.

let print_intln x =

print_int x;

print_newline ();;

foreach (1 -- 10) print_intln

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Examples

Exercise Count from 1 to 10.

1 -- 10

Exercise Print all elements between 1 to 10.

let print_intln x =

print_int x;

print_newline ();;

foreach (1 -- 10) print_intln

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Examples (2)

Exercise Print the square numbers of all odd numbers between
1 and 100, by decreasing order.

let square x = x * x

and odd x = x mod 2 = 1

in

foreach (map square ((100 --- 1) // odd))

print_intln

Did I mention syntax extensions?

foreach [? x*x | x <- (100 --- 1); x mod 2 = 1]

print_intln

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Examples (2)

Exercise Print the square numbers of all odd numbers between
1 and 100, by decreasing order.

let square x = x * x

and odd x = x mod 2 = 1

in

foreach (map square ((100 --- 1) // odd))

print_intln

Did I mention syntax extensions?

foreach [? x*x | x <- (100 --- 1); x mod 2 = 1]

print_intln

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Examples (2)

Exercise Print the square numbers of all odd numbers between
1 and 100, by decreasing order.

let square x = x * x

and odd x = x mod 2 = 1

in

foreach (map square ((100 --- 1) // odd))

print_intln

Did I mention syntax extensions?

foreach [? x*x | x <- (100 --- 1); x mod 2 = 1]

print_intln

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Examples (3)

Exercise Keep only the vowels of �OCaml is too cool for
school�.

let too_cool = "OCaml is too cool for school" in

String.of_enum(

(String.enum too_cool) //

(function 'a'|'e'|'i'|'o'|'u'

|'A'|'E'|'I'|'O'|'U' -> true

| _ -> false))

Syntax extensions, again:

[? String : x | x <- String : too_cool ; vowel x]

where vowel = function 'a'|'e'|'i'|'o'|'u'

|'A'|'E'|'I'|'O'|'U' -> true

| _ -> false

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Examples (3)

Exercise Keep only the vowels of �OCaml is too cool for
school�.

let too_cool = "OCaml is too cool for school" in

String.of_enum(

(String.enum too_cool) //

(function 'a'|'e'|'i'|'o'|'u'

|'A'|'E'|'I'|'O'|'U' -> true

| _ -> false))

Syntax extensions, again:

[? String : x | x <- String : too_cool ; vowel x]

where vowel = function 'a'|'e'|'i'|'o'|'u'

|'A'|'E'|'I'|'O'|'U' -> true

| _ -> false

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Examples (3)

Exercise Keep only the vowels of �OCaml is too cool for
school�.

let too_cool = "OCaml is too cool for school" in

String.of_enum(

(String.enum too_cool) //

(function 'a'|'e'|'i'|'o'|'u'

|'A'|'E'|'I'|'O'|'U' -> true

| _ -> false))

Syntax extensions, again:

[? String : x | x <- String : too_cool ; vowel x]

where vowel = function 'a'|'e'|'i'|'o'|'u'

|'A'|'E'|'I'|'O'|'U' -> true

| _ -> false

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Other data structures

I Doubly-linked lists, defunctorized polymorphic maps,
multi-maps, dynamic arrays, lazy lists, defunctorized
polymorphic sets, ...

I Upgraded lists, arrays, big arrays, hashtables, queues,
stacks, maps, sets.

I Everything supports Sexplib, printing, enumerations, etc.

I Most things support comprehension.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Other data structures

I Doubly-linked lists, defunctorized polymorphic maps,
multi-maps, dynamic arrays, lazy lists, defunctorized
polymorphic sets, ...

I Upgraded lists, arrays, big arrays, hashtables, queues,
stacks, maps, sets.

I Everything supports Sexplib, printing, enumerations, etc.

I Most things support comprehension.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Other data structures

I Doubly-linked lists, defunctorized polymorphic maps,
multi-maps, dynamic arrays, lazy lists, defunctorized
polymorphic sets, ...

I Upgraded lists, arrays, big arrays, hashtables, queues,
stacks, maps, sets.

I Everything supports Sexplib, printing, enumerations, etc.

I Most things support comprehension.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Other data structures

I Doubly-linked lists, defunctorized polymorphic maps,
multi-maps, dynamic arrays, lazy lists, defunctorized
polymorphic sets, ...

I Upgraded lists, arrays, big arrays, hashtables, queues,
stacks, maps, sets.

I Everything supports Sexplib, printing, enumerations, etc.

I Most things support comprehension.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Channels are closed

Jan 30 00:50:25 <sanguinev> Is there a way to make an output_channel that just

accepts output and doesn't do anything?

Jan 30 00:51:23 <brendan> open_out "/dev/null" ?

Jan 30 00:54:00 <sanguinev> brendan: I am looking for something that won't require

a file/any specified location.

Jan 30 00:54:47 <Yoric[DT]> Shameless plug: with Batteries, it's possible.

Jan 30 00:55:14 <Yoric[DT]> (other than that, you could trick it with a pipe, but

that's much more complicated than /dev/null)

Jan 30 00:55:50 <sanguinev> Yoric[DT]: I am hoping for something nice and system

agnostic so I can run the same code on linux/unix/

mac OSx/cygwin...

...

Also, can't �lter/map/... on channels. Shameless plug #2:
channel #ocaml is open, though.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Channels are closed

Jan 30 00:50:25 <sanguinev> Is there a way to make an output_channel that just

accepts output and doesn't do anything?

Jan 30 00:51:23 <brendan> open_out "/dev/null" ?

Jan 30 00:54:00 <sanguinev> brendan: I am looking for something that won't require

a file/any specified location.

Jan 30 00:54:47 <Yoric[DT]> Shameless plug: with Batteries, it's possible.

Jan 30 00:55:14 <Yoric[DT]> (other than that, you could trick it with a pipe, but

that's much more complicated than /dev/null)

Jan 30 00:55:50 <sanguinev> Yoric[DT]: I am hoping for something nice and system

agnostic so I can run the same code on linux/unix/

mac OSx/cygwin...

... Also, can't �lter/map/... on channels.

Shameless plug #2:
channel #ocaml is open, though.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Channels are closed

Jan 30 00:50:25 <sanguinev> Is there a way to make an output_channel that just

accepts output and doesn't do anything?

Jan 30 00:51:23 <brendan> open_out "/dev/null" ?

Jan 30 00:54:00 <sanguinev> brendan: I am looking for something that won't require

a file/any specified location.

Jan 30 00:54:47 <Yoric[DT]> Shameless plug: with Batteries, it's possible.

Jan 30 00:55:14 <Yoric[DT]> (other than that, you could trick it with a pipe, but

that's much more complicated than /dev/null)

Jan 30 00:55:50 <sanguinev> Yoric[DT]: I am hoping for something nice and system

agnostic so I can run the same code on linux/unix/

mac OSx/cygwin...

... Also, can't �lter/map/... on channels. Shameless plug #2:
channel #ocaml is open, though.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

What's going on?

OCaml's in_channel/out_channel are

I operating system-level

I tied to the Unix model

I closed.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Enter input/output

Overview Drop-in replacement for in_channel/out_channel
operations.

Operations All the usual operations, plus i/o �lters, position,
callbacks, Unicode, auto-�ushing. . .

Conversion To/from enumerations, strings, �le names, sockets,
processes. . .

Construction File.open_in/open_out,
wrap_in/wrap_out. . .

Source ExtLib, OCamlNet, Camomile, more stu�

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Enter input/output

Overview Drop-in replacement for in_channel/out_channel
operations.

Operations All the usual operations, plus i/o �lters, position,
callbacks, Unicode, auto-�ushing. . .

Conversion To/from enumerations, strings, �le names, sockets,
processes. . .

Construction File.open_in/open_out,
wrap_in/wrap_out. . .

Source ExtLib, OCamlNet, Camomile, more stu�

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Enter input/output

Overview Drop-in replacement for in_channel/out_channel
operations.

Operations All the usual operations, plus i/o �lters, position,
callbacks, Unicode, auto-�ushing. . .

Conversion To/from enumerations, strings, �le names, sockets,
processes. . .

Construction File.open_in/open_out,
wrap_in/wrap_out. . .

Source ExtLib, OCamlNet, Camomile, more stu�

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Let's do it with Batteries

Exercise Let's implement cat with Batteries.

open IO, File

foreach (args ())

(fun s -> copy (open_in s) stdout)

or

foreach (args ()) **>

fun s -> copy (open_in s) stdout

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Let's do it with Batteries

Exercise Let's implement cat with Batteries.

open IO, File

foreach (args ())

(fun s -> copy (open_in s) stdout)

or

foreach (args ()) **>

fun s -> copy (open_in s) stdout

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Let's do it with Batteries

Exercise Let's implement cat with Batteries.

open IO, File

foreach (args ())

(fun s -> copy (open_in s) stdout)

or

foreach (args ()) **>

fun s -> copy (open_in s) stdout

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Let's do it with Batteries (2)

Exercise Now, let's implement a version of cat which prints
line numbers along with line contents.

open IO

foreach (args ()) (fun s ->

Enum.iteri

(Printf.printf "%d %s\n")

(File.lines_of s)

)

In this last version, a �le was automatically opened, read
(lazily), split into lines and closed.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Let's do it with Batteries (2)

Exercise Now, let's implement a version of cat which prints
line numbers along with line contents.

open IO

foreach (args ()) (fun s ->

Enum.iteri

(Printf.printf "%d %s\n")

(File.lines_of s)

)

In this last version, a �le was automatically opened, read
(lazily), split into lines and closed.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Let's do it with Batteries (2)

Exercise Now, let's implement a version of cat which prints
line numbers along with line contents.

open IO

foreach (args ()) (fun s ->

Enum.iteri

(Printf.printf "%d %s\n")

(File.lines_of s)

)

In this last version, a �le was automatically opened, read
(lazily), split into lines and closed.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Going further

Exercise Add gzip-decompression.

open IO

foreach (args ()) (fun s ->

Enum.iteri

(Printf.printf "%d %s\n")

(lines_of (GZip.uncompress (File.open_in s)))

)

Exercise Count number of bytes read.

foreach (args ()) (fun s ->

let (inp , pos) = pos_in (File.open_in s) in

Enum.iteri

(Printf.printf "%d %s\n")

(lines_of (GZip.uncompress inp));

Printf.printf "\tRead %d bytes\n" (pos ())

)

etc.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Going further

Exercise Add gzip-decompression.

open IO

foreach (args ()) (fun s ->

Enum.iteri

(Printf.printf "%d %s\n")

(lines_of (GZip.uncompress (File.open_in s)))

)

Exercise Count number of bytes read.

foreach (args ()) (fun s ->

let (inp , pos) = pos_in (File.open_in s) in

Enum.iteri

(Printf.printf "%d %s\n")

(lines_of (GZip.uncompress inp));

Printf.printf "\tRead %d bytes\n" (pos ())

)

etc.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Going further

Exercise Add gzip-decompression.

open IO

foreach (args ()) (fun s ->

Enum.iteri

(Printf.printf "%d %s\n")

(lines_of (GZip.uncompress (File.open_in s)))

)

Exercise Count number of bytes read.

foreach (args ()) (fun s ->

let (inp , pos) = pos_in (File.open_in s) in

Enum.iteri

(Printf.printf "%d %s\n")

(lines_of (GZip.uncompress inp));

Printf.printf "\tRead %d bytes\n" (pos ())

)

etc.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Going further

Exercise Add gzip-decompression.

open IO

foreach (args ()) (fun s ->

Enum.iteri

(Printf.printf "%d %s\n")

(lines_of (GZip.uncompress (File.open_in s)))

)

Exercise Count number of bytes read.

foreach (args ()) (fun s ->

let (inp , pos) = pos_in (File.open_in s) in

Enum.iteri

(Printf.printf "%d %s\n")

(lines_of (GZip.uncompress inp));

Printf.printf "\tRead %d bytes\n" (pos ())

)

etc.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Going further

Exercise Add gzip-decompression.

open IO

foreach (args ()) (fun s ->

Enum.iteri

(Printf.printf "%d %s\n")

(lines_of (GZip.uncompress (File.open_in s)))

)

Exercise Count number of bytes read.

foreach (args ()) (fun s ->

let (inp , pos) = pos_in (File.open_in s) in

Enum.iteri

(Printf.printf "%d %s\n")

(lines_of (GZip.uncompress inp));

Printf.printf "\tRead %d bytes\n" (pos ())

)

etc.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

I/O is open

Want to read from a string, a socket, an http connexion, etc?

Writing new inputs/outputs is easy.

val create_in:

read:(unit -> char) ->

input:(string -> int -> int -> int) ->

close:(unit -> unit) ->

input

val wrap_in:

read:(unit -> char) ->

input:(string -> int -> int -> int) ->

close:(unit -> unit) ->

underlying :(input list) ->

input

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

I/O is open

Want to read from a string, a socket, an http connexion, etc?
Writing new inputs/outputs is easy.

val create_in:

read:(unit -> char) ->

input:(string -> int -> int -> int) ->

close:(unit -> unit) ->

input

val wrap_in:

read:(unit -> char) ->

input:(string -> int -> int -> int) ->

close:(unit -> unit) ->

underlying :(input list) ->

input

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

The problem with strings

Strings are mutable, hence:

di�cult to trust

slooow to append.

Strings are arrays of char, hence:

confuse characters and bytes

have no clear notion of encoding.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

The problem with strings

Strings are mutable, hence:

di�cult to trust

slooow to append.

Strings are arrays of char, hence:

confuse characters and bytes

have no clear notion of encoding.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Introducing ropes

r"This is a UTF -8 encoded rope"

Overview Functional UTF-8 encoded text with O(ln(n))
concatenation but slower get.

Limitations About 700Mb in 32-bit, about 220Gb in 64-bit.

Operations All the operations of String except mutability.

Conversion Rope.of_latin1, Rope.of_uchar, ...

Notes Allocation optimized (with Camlp4!), immutable
implementation.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Introducing ropes

r"This is a UTF -8 encoded rope"

Overview Functional UTF-8 encoded text with O(ln(n))
concatenation but slower get.

Limitations About 700Mb in 32-bit, about 220Gb in 64-bit.

Operations All the operations of String except mutability.

Conversion Rope.of_latin1, Rope.of_uchar, ...

Notes Allocation optimized (with Camlp4!), immutable
implementation.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Introducing ropes

r"This is a UTF -8 encoded rope"

Overview Functional UTF-8 encoded text with O(ln(n))
concatenation but slower get.

Limitations About 700Mb in 32-bit, about 220Gb in 64-bit.

Operations All the operations of String except mutability.

Conversion Rope.of_latin1, Rope.of_uchar, ...

Notes Allocation optimized (with Camlp4!), immutable
implementation.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Introducing ropes

r"This is a UTF -8 encoded rope"

Overview Functional UTF-8 encoded text with O(ln(n))
concatenation but slower get.

Limitations About 700Mb in 32-bit, about 220Gb in 64-bit.

Operations All the operations of String except mutability.

Conversion Rope.of_latin1, Rope.of_uchar, ...

Notes Allocation optimized (with Camlp4!), immutable
implementation.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Introducing string with capabilities

ro"... a read -only Latin -1 string";;

wo"... a write -only Latin -1 string";;

rw"... a read -write Latin -1 string";;

Overview Your usual strings, but with phantom types to ensure
read-only/write-only/read-write capability.

Operations All the operations of String.

Notes Optimized allocation for read-only strings.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Introducing string with capabilities

ro"... a read -only Latin -1 string";;

wo"... a write -only Latin -1 string";;

rw"... a read -write Latin -1 string";;

Overview Your usual strings, but with phantom types to ensure
read-only/write-only/read-write capability.

Operations All the operations of String.

Notes Optimized allocation for read-only strings.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Introducing string with capabilities

ro"... a read -only Latin -1 string";;

wo"... a write -only Latin -1 string";;

rw"... a read -write Latin -1 string";;

Overview Your usual strings, but with phantom types to ensure
read-only/write-only/read-write capability.

Operations All the operations of String.

Notes Optimized allocation for read-only strings.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Exercise

Exercise From a string s, return the �rst 5 characters, skip the
next 3, then return the next 5 characters, the next 5 characters
and the rest of the string.

let hairsplit s =

open String in

let e = enum s in

[? List : of_enum (f e) | f <- List :

[take 5; skip 3 |- take 5; take 5; identity]]

Exercise Same thing, but with Unicode.

let hairsplit s =

open Rope in

let e = enum s in

[? List : of_enum (f e) | f <- List :

[take 5; skip 3 |- take 5; take 5; identity]]

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Exercise

Exercise From a string s, return the �rst 5 characters, skip the
next 3, then return the next 5 characters, the next 5 characters
and the rest of the string.

let hairsplit s =

open String in

let e = enum s in

[? List : of_enum (f e) | f <- List :

[take 5; skip 3 |- take 5; take 5; identity]]

Exercise Same thing, but with Unicode.

let hairsplit s =

open Rope in

let e = enum s in

[? List : of_enum (f e) | f <- List :

[take 5; skip 3 |- take 5; take 5; identity]]

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Exercise

Exercise From a string s, return the �rst 5 characters, skip the
next 3, then return the next 5 characters, the next 5 characters
and the rest of the string.

let hairsplit s =

open String in

let e = enum s in

[? List : of_enum (f e) | f <- List :

[take 5; skip 3 |- take 5; take 5; identity]]

Exercise Same thing, but with Unicode.

let hairsplit s =

open Rope in

let e = enum s in

[? List : of_enum (f e) | f <- List :

[take 5; skip 3 |- take 5; take 5; identity]]

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Exercise

Exercise From a string s, return the �rst 5 characters, skip the
next 3, then return the next 5 characters, the next 5 characters
and the rest of the string.

let hairsplit s =

open String in

let e = enum s in

[? List : of_enum (f e) | f <- List :

[take 5; skip 3 |- take 5; take 5; identity]]

Exercise Same thing, but with Unicode.

let hairsplit s =

open Rope in

let e = enum s in

[? List : of_enum (f e) | f <- List :

[take 5; skip 3 |- take 5; take 5; identity]]

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Text features, too

All these data structures support

I iteration, map, folds, �lters, replacement, enumeration,
construction from enumeration, searching from left to
right, from right to left, from a given index, chopping,
trimming, stripping, upper/lowercasing, splitting, slicing,
splicing, etc.

I printing

I transcoding

I pattern-matching.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Enough for one day

Let's not detail

I uniform number modules for functorization

I safe integers

I enumerable signature

I on-line help

I documentation by topics

I mostly �at module-space

I overlay modules for labels or exceptionless error
management

I the Future module

I printing

I marshaling

I substrings

I path management

I package management

I calling the compilers from a module

I . . .

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Status

Latest version Alpha 3 for OCaml 3.10/3.11 being
bugsquashed.

Site http://batteries.forge.ocamlcore.org.

License Mostly LGPL + LE, bits in BSD.

Availability Tarball, GODI package.

Tools ocaml, ocamlc, ocamlopt, ocamlcp, ocamlbuild.

Size 27,650 loc signatures, 24,407 loc implementations.

Next version Beta 1, expected ca. March.

Testing needed!

Applications Extrapol static analyzer for C.

http://batteries.forge.ocamlcore.org

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Status

Latest version Alpha 3 for OCaml 3.10/3.11 being
bugsquashed.

Site http://batteries.forge.ocamlcore.org.

License Mostly LGPL + LE, bits in BSD.

Availability Tarball, GODI package.

Tools ocaml, ocamlc, ocamlopt, ocamlcp, ocamlbuild.

Size 27,650 loc signatures, 24,407 loc implementations.

Next version Beta 1, expected ca. March.

Testing needed!

Applications Extrapol static analyzer for C.

http://batteries.forge.ocamlcore.org

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Status

Latest version Alpha 3 for OCaml 3.10/3.11 being
bugsquashed.

Site http://batteries.forge.ocamlcore.org.

License Mostly LGPL + LE, bits in BSD.

Availability Tarball, GODI package.

Tools ocaml, ocamlc, ocamlopt, ocamlcp, ocamlbuild.

Size 27,650 loc signatures, 24,407 loc implementations.

Next version Beta 1, expected ca. March.

Testing needed!

Applications Extrapol static analyzer for C.

http://batteries.forge.ocamlcore.org

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Batteries for new apps

Larger standard library No more reimplementing lazy lists or
standard operators or trivial list functions.

Higher-level library More composability, more extensibility, etc.

Syntactic sugar More readable algorithms.

Fun!

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Batteries for new apps

Larger standard library No more reimplementing lazy lists or
standard operators or trivial list functions.

Higher-level library More composability, more extensibility, etc.

Syntactic sugar More readable algorithms.

Fun!

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Batteries for newbies

Documentation More examples, on-line help.

Uniformity Modules follow more rigorous patterns and should
be easier to learn.

Purity Going imperative is less often necessary.

Fun!

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Batteries for newbies

Documentation More examples, on-line help.

Uniformity Modules follow more rigorous patterns and should
be easier to learn.

Purity Going imperative is less often necessary.

Fun!

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Batteries for new libraries

Conventions Standard signatures, obsolete primitives, etc.

Better composition

Fun!

Essentially, please consider compatibility with Batteries for your
next libraries.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Batteries for new libraries

Conventions Standard signatures, obsolete primitives, etc.

Better composition

Fun!

Essentially, please consider compatibility with Batteries for your
next libraries.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Batteries for new libraries

Conventions Standard signatures, obsolete primitives, etc.

Better composition

Fun!

Essentially, please consider compatibility with Batteries for your
next libraries.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Problems to solve

I Huge binary size.

I Toplevel pretty-printers.

I Confusing error messages.

I Operator precedence for /, ..

I One-tarball distribution? Symbiosis?

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

In the future

I More OCamlNet (β).

I Preferences (β).

I Pa-do (β).

I Logging.

I Relooking the documentation with iframes.

I Locales.

I Optimizations (eg strings).

I CoThreads.

I oUnit?

I CamlGraph?

I AST/bytecode generation?

I Functional unparsing with Camlp4 support?

I Graphics? Cairo? Some UI toolkit?

I OS integration?

I Don't hesitate to use our Request for Features tracker.

I And our bug tracker, of course.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

In the future

I More OCamlNet (β).

I Preferences (β).

I Pa-do (β).

I Logging.

I Relooking the documentation with iframes.

I Locales.

I Optimizations (eg strings).

I CoThreads.

I oUnit?

I CamlGraph?

I AST/bytecode generation?

I Functional unparsing with Camlp4 support?

I Graphics? Cairo? Some UI toolkit?

I OS integration?

I Don't hesitate to use our Request for Features tracker.

I And our bug tracker, of course.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

In the future

I More OCamlNet (β).

I Preferences (β).

I Pa-do (β).

I Logging.

I Relooking the documentation with iframes.

I Locales.

I Optimizations (eg strings).

I CoThreads.

I oUnit?

I CamlGraph?

I AST/bytecode generation?

I Functional unparsing with Camlp4 support?

I Graphics? Cairo? Some UI toolkit?

I OS integration?

I Don't hesitate to use our Request for Features tracker.

I And our bug tracker, of course.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

In the future

I More OCamlNet (β).

I Preferences (β).

I Pa-do (β).

I Logging.

I Relooking the documentation with iframes.

I Locales.

I Optimizations (eg strings).

I CoThreads.

I oUnit?

I CamlGraph?

I AST/bytecode generation?

I Functional unparsing with Camlp4 support?

I Graphics? Cairo? Some UI toolkit?

I OS integration?

I Don't hesitate to use our Request for Features tracker.

I And our bug tracker, of course.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

In the future

I More OCamlNet (β).

I Preferences (β).

I Pa-do (β).

I Logging.

I Relooking the documentation with iframes.

I Locales.

I Optimizations (eg strings).

I CoThreads.

I oUnit?

I CamlGraph?

I AST/bytecode generation?

I Functional unparsing with Camlp4 support?

I Graphics? Cairo? Some UI toolkit?

I OS integration?

I Don't hesitate to use our Request for Features tracker.

I And our bug tracker, of course.

OCaml, Batteries
Included

David Teller et al.

Introduction

Manipulating data
From loops to enumerations
Other data structures

I/O
From Channels to I/O
Composability
Extensibility

Text
From string to. . .
Features

Conclusion

Thank you

Questions?

OCaml, Batteries
Included

David Teller et al.

If you're. . .

I A PhD, a PhD student or a future PhD student.

I Into OCaml, similar languages or Coq.

I Into compilers, concurrency, distributed systems,
semantics, proof of programs.

I Into language tools, language front-ends, language design.

I Interested by safe programming for the web.

Contact me/us: MLState may have a job/PhD/internship for
you.

OCaml, Batteries
Included

David Teller et al.

If you're. . .

I A PhD, a PhD student or a future PhD student.

I Into OCaml, similar languages or Coq.

I Into compilers, concurrency, distributed systems,
semantics, proof of programs.

I Into language tools, language front-ends, language design.

I Interested by safe programming for the web.

Contact me/us: MLState may have a job/PhD/internship for
you.

	Introduction
	Manipulating data
	From loops to enumerations
	Other data structures

	I/O
	From Channels to I/O
	Composability
	Extensibility

	Text
	From string to…
	Features

	Conclusion

