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Chapter 1

Introduction

1.1 Batch Mode vs. GUI Mode

The Jessie plug-in allows to perform deductive verification of C programs inside Frama-
C. The C file possibly annotated in ACSL is first checked for syntax errors by Frama-C
core, before it is translated to various intermediate languages inside the Why Platform
embedded in Frama-C, and finally verification conditions (VC) are generated and a
prover is called on these, as sketched in Figure 1.1.

By default, the Jessie plug-in launches the GUI mode. To invoke this mode on a
file ex . c, just type

> frama-c -Jjessie ex.c

The GUI of the Why Plaform (a.k.a. GWhy) is called. It presents each VC on a
line, with available provers on columns.

To invoke the plug-in in batch mode, use the -~ jessie—atp with the prover name
as argument, e.g.

> frama-c -Jjessie -Jjessie-atp simplify ex.c

runs the prover Simplify on the generated VCs. Valid identifiers for provers are docu-
mented in Why, it includes alt-ergo, cvc3, yices, z3. See also the prover tricks
page .

Finally, you can use the generic name goals to just ask for generation of VCs
without running any prover.

1.2 Basic Use

A program does not need to be complete nor annotated to be analyzed with the Jessie
plug-in. As a first example, take program max:

int max(int i, int J) {
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Figure 1.1: Frama-C and the Why Platform
return (i < j) ? J : 1i;

Calling the Jessie plug-in in batch mode generates the following output:

frama-c —-jessie —-jessie-atp simplify max.c
Parsing

[preprocessing] running gcc -C -E -I. -include
/usr/local/share/frama-c/jessie/jessie_prolog.h -dD max.c
Cleaning unused parts

Symbolic link

Starting semantical analysis

Starting Jessie translation

Producing Jessie files in subdir max.jessie
File max.jessie/max.jc written.

File max.jessie/max.cloc written.

Calling Jessie tool in subdir max.jessie
Generating Why function £

Calling VCs generator.



why —-simplify [...] why/max.why

Running Simplify on proof obligations

(. = valid * = invalid ? = unknown # = timeout ! = failure)
simplify/max_why.sx : (0/0/0/0/0)

The result of calling prover Simplify is succinctly reported as a sequence of sym-
bols ., =, 2, # and ! which denote respectively that the corresponding VC is valid,
invalid or unknown, or else that a timeout or a failure occured. By default, timeout is
set to 10 s for each VC. This result is summarized as a tuple (v,i,u,t,f) reporting the
total number of each outcome.

Here, summary (0/0/0/0/0) says that there were no VC to prove. If instead we
call the Jessie plug-in in GUI mode, we get no VC to prove. Indeed, function max is
safe and we did not ask for the verification of a functional property.

Consider now adding a postcondition to function max:

//@ ensures \result == ((i < j) ? F : i);
int max(int i, int j) {
return (i < j) 2 j : 1i;

This ACSL annotation expresses the fact function max returns the maximum of its
parameters i and j. Now, running the Jessie plug-in in batch mode outputs:

Running Simplify on proof obligations

(. = valid * = invalid ? = unknown # = timeout ! = failure)
simplify/max_why.sx : .2 (1/0/1/0/0)
total 2
valid 1 ( 50%)
invalid 0 ( 0%)
unknown 1 ( 50%)
timeout 0 ( 0%)
failure : 0 ( 0%)
total wallclock time 0.19 sec
total CPU time 0.16 sec
valid VCs:
average CPU time : 0.08
max CPU time : 0.08

invalid VCs:
average CPU time : nan
max CPU time : 0.00
unknown VCs:
average CPU time : 0.08
max CPU time : 0.08

This says that Simplify could prove one VC and not the other. To see what these VC
represent, we call now the Jessie plug-in in GUI mode. Each VC represents verification



of the postcondition in a different context. The first VC represents the context where
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The second VC represents the context where i >= 7. Context can be seen in the
upper right panel of GWhy, expressed in the intermediate language of Why. It is not
yet possible to retrieve the equivalent C expressions or statements.

iy - F ey prand will mary dnal

Ble genfiguration presl
. J_Lt AINTas =
Alt-Erga Ah-Erga Sirplfy Smphly 23 vices  Yicss T: trug = troe =
Proof abligations 0E 0.8 1.5. 154 13 1018 L.0.16 Statisti '
 anteger_of_int32{i_1) == integer_of int32{j_1]
[5elect} [Graph) (55) {551 [mona) A - e =
Function F o S tep =i 1 o
Diadault bahndar
1. postcondtion = — — - - - - #/8 ansures
ant flant 1, ant 33 {
2. postcondtion = - - - = = - raturn (1 = 33 7 J : i
1
D
Timeout 10 = | Pretty Printer | fis: maec WC: posteondition

Running Simplify inside GWhy shows that the second VC is not proved by Sim-
plify. However, it is proved by prover Alt-Ergo.
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The Jessie plug-in can also be run in batch mode with prover Alt-Ergo instead
of Simplify, with option —jessie-atp alt-ergo, which results in the following
output:

Running Alt-Ergo on proof obligations

(. = valid * = invalid ? = unknown # = timeout ! = failure)
why/max_why.why : .. (2/0/0/0/0)

total : 2

valid 2 (100%)

invalid 0 ( 0%)

unknown 0 ( 0%)

timeout 0 ( 0%)



failure : 0 ( 0%)
total wallclock time : 0.35 sec

total CPU time : 0.14 sec
valid VCs:

average CPU time : 0.07

max CPU time : 0.08

invalid VCs:
average CPU time : nan

max CPU time : 0.00
unknown VCs:

average CPU time : nan

max CPU time : 0.00

1.3 Safety Checking vs. Functional Verification

In the simple max example, VC for the postcondition are grouped in the default be-
havior for function max. In general, VC for a function are grouped in more than one

group:

e Safety: VC this group guard against safety violations such as null-pointer deref-
erencing, buffer overflow, integer overflow, etc.

e Default behavior: VC in this group concern the verification of a function’s de-
fault behavior, which includes verification of its postcondition, frame condition,
loop invariants and intermediate assertions.

o User-defined behavior: VC in this group concern the verification of a function’s
user-defined behavior, which includes verification of its postcondition, frame
condition, loop invariants and intermediate assertions for this specific behavior.

Here is a more complex variant of function max which takes pointer parameters
and returns 0 on success and -1 on failure.

AN
%
(1)

requires \valid (i) && \valid(7j);
requires r == NULL [/ \valid(r);
assigns x*r;
behavior zero:

assumes r == NULL;

assigns \nothing;

ensures \result == —1;
behavior normal:

assumes \valid(r);

assigns x*r;

ensures *r == ((*1 < *3j) ? xj : *1);

ensures \result == 0;
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int max(int *r, intx i, intx Jj) |
if (!r) return —1;
*xr = (*x1 < %x3) ? x3j : *i;
return 0;

Running the Jessie plug-in in GUI mode results in 4 groups of VC: Safety, De-
fault behavior, Normal behavior ‘normal‘ and Normal behavior ‘zero‘ for the two user-
defined behaviors.
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VC that are proved in one group can be available to prove VC in other groups. No
circularity paradox is possible here, since the proof of a VC can only rely on other VC
higher in the control-flow graph of the function. We made the following choices:

e To prove a VC in Safety, one can rely on VC in Default behavior. Typically, one
can rely on preconditions or loop invariants to prove safety.

e To prove a VC in Default behavior, one can rely on VC in Safety. Typically,
one can rely on ranges of values implied by safety to prove loop invariants and
postconditions.

e To prove a VC in a Normal behavior, one can rely on VC in both Safety and
Default behavior.

Next, we detail how to prove each group of VC.



Chapter 2

Safety Checking

A preliminary to any verification task using the Jessie plug-in is to verify the safety
of functions. Safety has two components: memory safety and integer safety. Memory
safety deals with validity of memory accesses to allocated memory. Integer safety
deals with absence of integer overflows and validity of operations on integers, such as
the absence of division by zero.

2.1 Memory Safety

To concentrate first on memory safety only, we call the Jessie plug-in with option
-jessie—-int-model exact. This option dictates that integers in C programs
behave as infinite-precision mathematical integers, without overflows. Our running
example will be the famous binary_search function, which searches an element
in an ordered array of such elements. On success, it returns the index at which the
element appears in the array. On failure, it returns —1.

int binary_search(intx t, int n, int v) {
L

(
int 1 = 0, u=n-1, p = —1;
while (1 <= u) {
int m = (1 + u) / 2;
if (t[m] < v)
1l =m+ 1;
else if (t[m] > v)
u=m— 1;
else {

return p;



Let’s call Frama-C with the Jessie plug-in on this program:
> frama-c —Jjessie —jessie-int-model exact binary-search.c

As seen on Figure 2.1, we get 3 VC, an obvious one that states the divisor 2 is not
null, and two more that state the array access t [m] should be within bounds. This is
due to the memory model used, that decomposes any access check into two: one that
states the access is above the minimal bound allowed, and one that states the access is
below the maximal bound allowed.

Proof obligations ergo  Simplify| Z3(sSs)
= Safety of Function binary search (1/3) b 4 x ®

1 @ & @6

2
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Figure 2.1: Memory safety with no annotations

The obvious VC is trivially proved by all provers, while the two VC for memory
safety cannot be proved. Indeed, it is false that, in any context, functionbinary_search
is memory safe. To ensure memory safety, binary_search must be called in a con-
text in which requires n to be positive and array t to be valid between indices 0 and
n-1 included. Since function binary_search accesses array t inside a loop, it is
not enough to give a function precondition to make the generated VC provable. Clas-
sically, one must add a loop invariant that states the guarantees provided on the array
index, despite its changing value. It states that the value of index 1 stays within the
bounds of the array t.

//@ requires n >= 0 && \valid range(t,0,n—1);
int binary_search(intx t, int n, int v) {
int 1 = 0, u=n-1, p = —1;
//@ loop invariant 0 <= 1 && u <= n—1;
while (1 <= u ) {
int m = (1 + u) / 2;
if (t[m] < v)
1l =m+ 1;
else if (t[m] > v)
u=m— 1;
else {
p = m; break;



return p;

There are now 7 VC generated: 2 to guarantee the loop invariant is initially estab-
lished (because the conjunct is split), 2 to guarantee the same loop invariant is preserved
through the loop, and the 3 VC seen previously. Not all VC generated are proved au-
tomatically with these annotations. Of the 3 VC seen previously, the maximal bound
check is still not proved. And the preservation of the loop invariant that deals with
an upper bound on u is not proved either. It comes from the non-linear expression as-
signed to min the loop, that is difficult to take into account automatically. A first attempt
at solving this problem is to add an assertion to help automatic provers, providing some
form of cut or hint in the proof. This is not sufficient here. Another possibility is to
add a lemma, that should be proved using available axioms, and used as an axiom in
proving the VC for safety. This is working on our example.

/+@ lemma mean : \forall integer x, y; X <=y ==> x <= (x+y)/2 <= y; */

//@ requires n >= 0 && \valid range(t,0,n—1);
int binary_search(intx t, int n, int v) {
int 1 =0, u=n-1, p= —-1;
//@ loop invariant 0 <= 1 && u <= n—1;
while (1 <= u) {
int m = (1 + u) / 2;
//@ assert 1 <= m <= u;
if (t[m] < v)
1l =m+ 1;
else if (t[m] > v)
u=m — 1;
else {
p = m; break;

}

return p;

As shown in Figure 2.2, no single automatic prover proves all VC, but altogether,
all VC are proved by some prover. This guarantees the memory safety of function
binary_search. Notice the assertion adds 2 VC, which totals 9 VC for function
binary_search, plus the lemma.

In the following, we remove the assertion, which is not useful.

2.2 Integer Overflow Safety

Let’s now consider machine integers instead of idealized mathematical integers. No-
tice our default target machine architecture states that plain int are 32-bit integers.
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Figure 2.2: Memory safety with precondition and loop invariant

Since we are dealing with signed integers, a reasonable choice is to prevent overflows
altogether. Thus, we call Frama-C with option:

> framac —Jjessie —jessie-int-model bounded binary-search.c

The result can be seen in Figure 2.3.There are 10 more VC to check integer oper-
ations return a result within bounds, one of which only is not proved. Except that, the
result is nearly the same as with exact integers, except proving the lemma takes more
time, due to the added layer of encoding for bounded integers.
The only VC not proved checks that 1+u does not overflow a machine integer.
Nothing prevents this from happening with our current precondition for functionbinary_search.
There are two possibilities here. The easiest one is to strengthen the precondition by re-
quiring that n is no more than half the maximal signed integer INT_MAX. The best one
is to change the source of binary_search to prevent overflows even in presence of
large integers. It consists in changing the buggy line

int m = (1 + u) / 2;

into

intm=1+ (u-1) / 2;

This is our choice here. As shown in Figure 2.4, all VC are now proved automati-

cally.
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Another choice is to set the integer mode to modulo, which means overflows are
allowed, with modulo semantics. To reach that result, we call Frama-C with options:

> framac —-jessie —-jessie-int-model modulo binary-search.c

This leads to the same choices as above to guarantee this time that the memory
access t [m] is within bounds. Otherwise, m might become strictly negative, very
likely accessing beyond t bounds.

2.3 Combining with Value analysis plug-in

TODO
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Figure 2.3: Memory safety + integer overflow safety
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Chapter 3

Functional Verification

3.1 Behaviors

Now that the safety of function binary_search is proved, one can attempt the veri-
fication of functional properties, like the input-output behavior of function binary_search.
At the simplest, one can add a postcondition that binary_search should respect

upon returning to its caller. Here, we add bounds on the value returned by binary_search.
To prove this postcondition, strengthening the loop invariant is necessary.

/+@ lemma mean : \forall integer x, y; X <=y ==> x <= (x+y)/2 <= y; */

/+*@ requires n >= 0 && \valid range(t,0,n—1);
@ ensures —1 <= \result <= n—1;

@x/
int binary_search(intx t, int n, int v) {
int 1 = 0, u=n-1, p = —1;

/+@ loop invariant
@ 0 <=1 && u <= n—1 && —1 <= p <= n—1;
@x/
while (1 <= u) {
intm=1+ (u — 1) / 2;
if (t[m] < v)

1l =m+ 1;
else if (t[m] > v)

u=m — 1;
else {

return p;

14



As shown in Figure 3.1, all VC are proved automatically here.
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Figure 3.1: General postcondition

One can be more precise and separate the postcondition according to different be-
haviors. The assumes clause of a behavior gives precisely the context in which a behav-
ior applies. Here, we state that function binary_search has two modes: a success
mode and a failure mode. This directly relies on array t to be sorted, thus we add this
as a general requirement. The success mode states that whenever the calling context is
such that value v is in the range of t searched, then the value returned is a valid index.
The failure mode states that whenever the calling context is such that value v is not
in the range of t searched, then function binary_search returns —1. Again, it is
necessary to strengthen the loop invariant to prove the VC generated.

/%@ lemma mean : \forall int x, y; X <=y ==> x <= (x+y)/2 <= y; */
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/*@ requires
@ n >= 0 && \valid_range (t,0,n—1) &¢&

@ \forall int k1, int k2; 0 <= k1l <= k2 <= n—1 ==> t[kl] <= t[k2];
@ behavior success:
@ assumes \exists int k; 0 <= k <= n—1 && t[k] == v;
@ ensures 0 <= \result <= n—1;
@ behavior failure:
@ assumes \forall int k; 0 <= k <= n—1 ==> t[k] < v || t[k] > v;
@ ensures \result == —1;
@x/
int binary_search(intx t, int n, int v) {
int 1 =0, u=n-1, p= —-1;

/#@ loop invariant

@ 0 <=1 && u <= n—1 && —1 <= p <= n—1

@ && (p == —1 ==> \forall int k;
@ && (p >= 0 ==> t[p]==Vv);
@x/
while (1 <= u
int m =1 + (u
if (t[m] < v)
1l =m+ 1;
else if (t[m]
m — 1;

) A

1) / 2;

> V)

return p;

0 <= k < n ==> t[k]

== v ==> 1 <= k <= u)

Figure 3.2 summarizes the results obtained in that case, for each behavior.
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Figure 3.2: Postconditions in behaviors
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3.2 Advanced Algebraic Modeling

The following example introduces use of algebraic specification. The goal is the verify
a simple sorting algorithm (by extraction of the minimum).

The first step is to introduce logical predicates to define the meanings for an array
to be sorted in increasing order, to be a permutation of another. This is done as follows,
in a separate file say sorting.h

/+@ predicate Swap{Ll,L2} (int a[], integer 1, integer j) =

@ \at (a[i],L1) == \at(a[j],L2) &&

@ \at (a[j],L1) == \at(a[i],L2) &&

@ \forall integer k; k != 1 && k I= j

@ ==> \at (a[k],L1) == \at(al[k],L2);
@x/

/+@ inductive Permut{L1,L2} (int a[], integer 1, integer h) {
@ case Permut_refl{L}:
@ \forall int a[], integer 1, h; Permut{L,L} (a, 1, h) ;
@ case Permut_sym{L1,L2}:
@ \forall int a[], integer 1, h;
@ Permut{L1,L2} (a, 1, h) ==> Permut{L2,L1}(a, 1, h) ;
@ case Permut_trans{L1l,L2,L3}:
@ \forall int a[], integer 1, h;
@ Permut{L1,L2} (a, 1, h) && Permut{L2,L3}(a, 1, h) ==>
@ Permut{L1,L3}(a, 1, h) ;
@ case Permut_swap{Ll,L2}:
@ \forall int a[], integer 1, h, 1, 7j;
@ 1 <= i <=h & 1 <= j <= h && Swap{Ll,1L2}(a, i, ) ==>
@ Permut{L1,L2} (a, 1, h) ;
@
@

}
*/

/+@ predicate Sorted{L} (int a[], integer 1, integer h)
@ \forall integer i; 1 <= i < h ==> a[i] <= a[i+1] ;
@x/

The code is then annotated using these predicates as follows

#pragma JessieIntegerModel (math)
#include "sorting.h"

/*@ requires \valid(t+i) && \valid(t+7);
@ assigns t[i],t[7];

17



@ ensures Swap{0Old, Here} (t, 1, 7);
@x/

void swap (int t[], int i, int 3j) |
int tmp = t[i];
tli] = tl3jl;
t[j] = tmp;

/+@ requires \valid range(t,0,n—1);
@ behavior sorted:
@ ensures Sorted(t,0,n—1);
@ behavior permutation:
@ ensures Permut{0Old,Here} (t,0,n—1);

@x/
void min_sort (int t[], int n) {
int i, 3;

int mi,mv;
if (n <= 0) return;
/*@ loop invariant 0 <= i < n;
for sorted:
loop invariant
Sorted(t,0,1) &&
(\forall integer k1, k2 ;
0 <= k1l < 1 <= k2 < n ==> t[kl] <= t[k2]) ;
for permutation:
loop invariant Permut{Pre,Here} (t,0,n—1);
@ loop variant n—1i;
@x/
for (i=0; i<n-—1; i++) {
// look for minimum value among t[i..n—1]
mv = t[i]; mi = i;
/+@ loop invariant i < j && 1 <= mi < n;
@ for sorted:
@ loop invariant
@ mv == t[mi] &&
@ (\forall integer k; i <= k < j ==> t[k] >= mv);
@
@
@
@

@@ @@ @D @ @@ ® @

for permutation:
loop invariant
Permut {Pre, Here} (t,0,n—1);
loop variant n—j;
@x/
for (j=i+1; J < n; J++) {
if (t[j] < mv) {
mi = 3J ; mv=t[j];

18



}

swap (t,i,mi);
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Chapter 4

Inference of Annotations

4.1 Postconditions and Loop Invariants

To alleviate the annotation burden, it is possible to ask the Jessie plug-in to infer some
of them, through a combination of abstract interpretation and weakest preconditions.
This requires that APRON library for abstract interpretation is installed and Frama-C
configuration recognized it. Then, one can call

> framac —-jessie —-jessie-infer—-annot inv max.c

to perform abstract interpretation on program max . ¢, which computes necessary
loop invariants and postconditions (meaning an overapproximation of the real ones).

int max (int xr, intx i, int*x J) {
if (!r) return —1;
*r = (x1 < x3j) ? *j : *i;
return 0O;

On our unannotated max . c program, this produces postcondition t rue for the
first return and \valid(r) && \valid(i) && \valid (j) for the second re-
turn.
Various domains from APRON library are available with option - jessie-abstract-domain:

e box - domain of intervals, where an integer variables is bounded by constants.

e oct - domain of octagons, where the sum and difference of two integer variables
are bounded by constants.

e poly - domain of polyhedrons, computing linear relations over integer variables.
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4.2 Preconditions and Loop Invariants
Preconditions can also be computed by calling
> framac —-jessie —-jessie-infer—-annot pre max.c

which attemps to compute a sufficient precondition to guard against safety viola-
tions and prove functional properties. In case it computes false as sufficient pre-
condition, which occurs e.g. each time the property is beyond the capabilities of our
method, it simply ignores it. Still, our method can compute a stronger precondition than
necessary. E.g., on function max, it computes precondition \valid (r) && \valid (i) && \valid(j),
while a more precise precondition would allow r to be null. Still, the generated pre-
condition is indeed sufficient to prove the safety of function max:

Running Simplify on proof obligations
(. = valid * = invalid ? = unknown # = timeout ! = failure)
simplify/max_why.sx e (9/0/0/0/0)

To improve on the precision of the generated precondition, various methods have
been implemented:

o Quantifier elimination - This method computes an invariant I at the program
point where check C should hold, forms the quantified formula \ forall x,y... ; I ==> C
over local variables x, vy . . ., and eliminates quantifiers from this formula, re-
sulting in a suffcient precondition. This is the method called with option —jessie-infer—-annot pre.

o Weakest preconditions with quantifier elimination - This method improves on
direct quantifier elimination by propagating formula I ==> C backward in the
control-flow graph of the function before quantifying over local variables and
eliminating quantifiers. This is the method called with option ~jessie-infer—-annot wpre.

o Modified weakest preconditions with quantifier elimination - This method strengthen
the formula obtained by weakest preconditions with quantifier elimination, by
only considering tests and assignments which deal with variables in the formula
being propagated. Thus, it may result in a stronger precondition (i.e. a precondi-
tion less precise) but at a smaller computational cost. In particular, it may be ap-
plicable to programs where weakest preconditions with quantifier elimination is
too costly. This is the method called with option - jessie-infer-annot spre.
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Chapter 5

Separation of Memory Regions

By default, the Jessie plug-in assumes different pointers point into different memory
regions. E.g., the following postcondition can be proved on function max, because
parameters r, 1 and j are assumed to point into different regions.

/*@ requires \valid (i) && \valid(j);

@ requires r == NULL || \valid(r);
@ ensures *i == \old(*i) && *j == \old(*7);
@x/
int max(int *r, intx i, intx Jj) {
if (!r) return —1;
*r = (*1 < *x3J) 2 *xJ : *i;

return 0O;

To change this default behavior, call instead
> frama-c -Jjessie —-Jjessie-no-regions max.c
In this setting, the postcondition cannot be proved:
Running Simplify on proof obligations
(. = valid = = invalid ? = unknown # = timeout ! = failure)

simplify/max_why.sx I S (10/0/2/0/0)

Now, function max should only be called in a context where parameters r, i and j
indeed point into different regions, like the following:

int main(int a, int b) {
int c;
max (&c, &a, &b) ;
return c;
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In this context, all VC are proved.

In fact, regions that are only read, like the regions pointed to by i and j, need not
be disjoint. Since nothing is written in these regions, it is still correct to prove their
contract in a context where they are assumed disjoint, whereas they may not be disjoint
in reality. It is the case in the following context:

int main(int a, int b) {
int c;
max (&c, &a, &a) ;
return c;

In this context too, all VC are proved.
Finally, let’s consider the following case of a context in which a region that is read
and a function that is written are not disjoint:

int main(int a, int b) {
int c;
max (&a, &a, &b) ;
return c;

The proof that regions are indeed disjoint boils down to proving that set of pointers
{&a} and {&a} are disjoint (because function max only writes and reads »r and x1),
which is obviously false.

fila Cenfiguration Proof
AltErga Alt-Ergo Simplty Smalfy 3 int_P_int_ M b 74 (int_P, 1nt32) memory [
Pract chligaticns 0.8 08 154 1.5.4 1.3 int_P_ant_M_b_™1 = storelresult, b, v_bl |_
{Salact) [Gragh} i55] ———
Function main et_disje Ipset, letonial, ps ingletanial )
paet_disjoint[pset_singletonial, pset_singletonial)
Dafault bahaviar X - = - = —
lassert =
1, aEFAMion ? - — - - o psat_disjeintipsat_singlatonial,
2. precondition for user cal - = = =L paet_singletoniall =
f1m zn.
; I +] r
Tirrwoiut| 10 |= 1 Pretty Prirer | file: sy VC: assstion
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Chapter 6

Treatment of Unions and Casts

Unions without pointer fields are translated to bitvectors, so that access in these unions
are translated to low-level accesses. Thus, the following code can be analyzed, but we
do not yet provide a way to prove the resulting assertions, by asserting that any subset
of bits from the bitvector representation of 0 is 0:

union U {

int 1i;

struct { short sl; short s2; } s;
bi

//@ requires \valid(x);
void zero (union Ux x) {

x—>1 = 0;
//@ assert x—>s.sl == 0;
//@ assert x—>s.s2 == 0;

Unions with pointer fields (either direct fields or sub-fields of structure fields) are
translated differently, because we treat pointers differently than other types, to allow an
automatic analysis of separation of memory blocks. Thus, we treat unions with pointer
fields as discriminated unions, so that writing in a field erases all information on other
fields. This allows to verify the following program:

union U {
int i;
int* p;

bi

//@ requires \valid(x);
void zero (union Ux x) {
x—>1 = 0;
//@ assert x—>i == 0;
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x—>p = (int*)malloc (sizeof (int));
*x—>p = 1;
//@ assert *x—>p == 1;

Finally, casts between pointer types are allowed, with the corresponding accesses
to memory treated as low-level accesses to some bitvector. This allows to verify the
safety of the following program:

//@ requires \valid(x);
void zero(int* x) {
char *c = (charx)x;
*c = 0;
c++;
*c = 0;
c++;
xc = 0;
c++;

Notice that unions are allowed in logical annotations, but not pointer casts yet.
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Chapter 7

Reference Manual

7.1 General usage

The Jessie plug-in is activated by passing option —jessie to frama-c. Running the
Jessie plug-in on a file f.jc produces the following files:

o f.jessie: sub-directory where every generated files go
o fjessie/f.jc: translation of source file into intermediate Jessie language

o fjessie/f.cloc: trace file for source locations

The plug-in will then automatically call the Jessie tool of the Why platform to
analyze the generated file f.jc above. By default, VCs are generated for the Simplify
theorem prover, and this prover is run over these VCs, the result being displayed on
standard output. The —jessie—atp option allows to specify an alternate theorem
prover.

If the option —~framac -jessie is given, then instead of running a prover, the
VCs will be displayed inside the GWhy interface.

7.2 Unsupported features
7.2.1 Unsupported C features

Arbitrary gotos only forward gotos, not jumping into nested blocks, are allowed.
There is no plan to support arbitrary gotos in the future.

Function pointers

Arbitrary cast e from integers to pointers, from pointer to integers: no support
e between pointers: experimental support, only for casts in code, not logic

Note: casts between integer types are supported
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Union types experimental support, both in code and annotations

Variadic C functions unsupported

Floating point computations By default, float and double numbers are interpreted
as reals. Consequently, it is not possible to check properties relaed to rounding
errors or overflows. Experimental supports for other models are described below,

see description of the FloatModel pragma

7.2.2 partially supported ACSL features

Inductive predicates supported, but must follow the positive Horn clauses style pre-

sented in the ACSL documentation.

Axiomatic declarations supported (experimental)

7.2.3 Unsupported ACSL features

Contract clauses e loop assigns

complete, disjoint behaviors
terminates clauses

general code invariants (only loop invariants are supported)

Logic specifications e polymorphic types in logic declarations

Ghost code

model variables and fields

global invariants and type invariants

higher-order constructs \ lambda, \sum, \prod ...
\let construct

array and structure field functional modifiers
volatile declarations

\initialized and \specified predicates

e itis not checked whether ghost code does not interfere with program

code.

ghost structure fields are not supported

7.3 Command-line options

-jessie activates the plugin, to perform C to Jessie translation

-jessie-project-name <s> specify project name for Jessie analysis

-jessie-cpu-limit <i> set the time limit in sec. for the analysis
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-jessie-atp <s> do not launch the GUI but run specified automated theorem prover in
batch (among alt-ergo, cvc3, simplify, yices, z3), or just generate
the verification conditions (goals)

-jessie-int-model <s> Warning: will become obselete, use pragma JessielntegerModel
instead

set the model for integer arithmetic (exact, bounded or modulo)

-jessie-behavior <s> restrict verification to the given behavior (safety, default or a
user-defined behavior)

-jessie-std-stubs use annotated standard headers

-jessie-hint-level <i> level of hints, i.e. assertions to help the proof (e.g. for string
usage)

-jessie-infer-annot <s> infer function annotations (inv, pre, spre, wpre)
-jessie-abstract-domain <s> use specified abstract domain (box, oct or poly)
-jc-opt <s> give an option to the jessie tool (e.g., -trust-ai)

-why-opt <s> give an option to Why (e.g., -fast-wp)

7.4 Pragmas

Integer model

# pragma JessieIntegerModel(value)
Possible values: exact, math, strict, modulo
e exact or math: all int types are modeled by mathematical unbounded
integers

e strict: int types are modeled by integers with appropriate bounds, and
for each arithmetic operations, it is mandatory to show that no overflow
occur

e modulo: models exactly machine integer arithmetics, allowing overflow,
that is results must be taken modulo 2" for the appropriate n for each type.

Floating point model
# pragma FloatModel(value)
Possible values: real, math, strict, full

e real or math: all float types are modeled by mathematical unbounded
real numbers

28



e strict: float types are modeled by real numbers with appropriate bounds
are roundings, and for each floating-point arithmetic operations, it is manda-
tory to show that no overflow occur. This model is based on [1].

e full: models exactly floating-point arithmetics, allowing infinite values
or nans

Separation policy

# pragma SeparationPolicy(value)

Possible values: none, regions

Invariant policy

# pragma InvariantPolicy(value)

Possible values: none, arguments, ownership
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