
Version Lithium-20081212
December 16, 2008

Plug-in Development Guide

Julien Signoles with Virgile Prevosto

CEA LIST, Software Reliability Lab.

This work has been supported by the ’CAT’ ANR project (ANR-05-RNTL-00301).

2

Frama-C Plug-in Development Guide CAT RNTL project

Contents

Foreword 7

1 Introduction 9

2 Tutorial 11

2.1 Dynamic Plug-in . 11

2.1.1 Setup . 11

2.1.2 Plug-in Integration Overview . 12

2.1.3 Hello Frama-C World . 12

2.2 Static Plug-in . 13

2.2.1 Setup . 14

2.2.2 Plug-in Integration Overview . 15

2.2.3 Hello Frama-C World . 16

2.2.4 Configuration and Compilation . 16

2.2.5 Connection with the Frama-C World . 18

2.2.6 Extending the Command Line . 20

2.2.7 Testing . 21

2.2.8 Copyright your Work . 23

3 Software Architecture 25

3.1 General Description . 25

3.2 Cil: C Intermediate Language . 27

3.3 Kernel . 27

3.4 Plug-ins . 28

4 Advanced Plug-in Development 29

4.1 File Tree Overview . 29

4.2 Configure.in . 30

4.2.1 Principle . 30

4.2.2 Addition of a Simple Plug-in . 30

4 CONTENTS

4.2.3 Addition of Library/Tool Dependencies 31

4.2.4 Addition of Plug-in Dependencies . 32

4.2.5 Configuration of New Libraries or Tools 33

4.3 Makefile.in . 34

4.4 Testing . 35

4.4.1 Using ptests . 35

4.4.2 Configuration . 36

4.4.3 Alternative Testing . 37

4.5 Plug-in Registration and Access . 38

4.5.1 Static Registration and Access . 38

4.5.2 Dynamic Registration and Access . 39

4.6 Project Management System . 41

4.6.1 Overview and Key Notions . 41

4.6.2 Using Projects . 42

4.6.3 Internal State: Principle . 43

4.6.4 Registering a New Datatype . 45

4.6.5 Registering a New Internal State . 47

4.6.6 Direct Use of Low-level Functor Project.Computation.Register 49

4.6.7 Selections . 51

4.7 Initialisation Steps . 52

4.8 Command Line Options . 53

4.8.1 Storing New Static Option Values . 53

4.8.2 Storing New Dynamic Option Values . 54

4.8.3 Registering New Options . 55

4.9 Locations . 56

4.9.1 Representations . 57

4.9.2 Map Indexed by Locations . 57

4.10 Visitors . 57

4.10.1 Entry Points . 58

4.10.2 Methods . 58

4.10.3 Action Performed . 58

4.10.4 Visitors and Projects . 59

4.10.5 In-place and Copy Visitors . 59

4.10.6 Differences Between the Cil and Frama-C Visitors 60

4.10.7 Example . 60

4.11 GUI Extension . 61

4.12 Documentation . 62

Frama-C Plug-in Development Guide CAT RNTL project

CONTENTS 5

4.12.1 General Overview . 62

4.12.2 Plug-in Source Documentation . 62

4.12.3 Website . 62

4.13 License Policy . 63

5 Reference Manual 65

5.1 File Tree . 65

5.1.1 Directory cil . 66

5.1.2 Directory src . 67

5.2 Configure.in . 67

5.3 Makefile.in . 69

5.3.1 Sections . 70

5.3.2 Variables of Makefile.plugin . 71

5.4 Testing . 74

A Changes 79

Bibliography 81

List of Figures 83

Index 85

Frama-C Plug-in Development Guide CAT RNTL project

6 CONTENTS

Frama-C Plug-in Development Guide CAT RNTL project

Foreword

This is a preliminary documentation of the Frama-C implementation (available at http:
//www.frama-c.cea.fr) which aims to help any developer to integrate a new plug-in in-
side this platform. It is a deliverable of the task 2.3 of the ANR RNTL project CAT
(http://www.rntl.org/projet/resume2005/cat.htm).

The content of this document corresponds to the version Lithium-20081212 (December 16, 2008)
of Frama-C. However the development of Frama-C is still ongoing: several features described here
may still evolve in the future.

Acknowledgements

We gratefully thank all the people who contributed to this document: Loïc Correnson for his
complete reading with excellent suggestions in order to improve the document, Yannick Moy
for his careful reading and great improvements of the document, especially the tutorial, and also
Patrick Baudin, Pascal Cuoq, Benjamin Monate, Anne Pacalet and Richard Bonichon.

http://www.frama-c.cea.fr
http://www.frama-c.cea.fr
http://www.rntl.org/projet/resume2005/cat.htm

8 Foreword

Frama-C Plug-in Development Guide CAT RNTL project

Chapter 1

Introduction

This guide aims at helping any developer to program within the Frama-C platfom, in particular
for developing a new analysis or a new source-to-source transformation through a new plug-
in. For this purpose, it provides a step-by-step tutorial, a general presentation of the Frama-C
software architecture, a set of Frama-C-specific programming rules and an overview of the API
of the Frama-C kernel. However it does not provide a complete documentation of the Frama-C
API and, in particular, it does not describe the API of existing Frama-C plug-ins. This API is
documented in the html source code generated by make doc (see Section 4.12.1 for additional
details about this documentation).

The reader of this guide may be either a Frama-C beginner who wishes to develop his/her own
analysis with the help of Frama-C, or an intermediate-level plug-in developer who wants to better
understand one particular aspect of the framework, or a Frama-C expert who aims to remember
details about one specific point of the Frama-C development.

About this document In order to ease the reading, beginning of sections may state the
category of readers it is intended for and a set of prerequisites.

Appendix A references all the changes made to this document between successive Frama-C re-
leases.

In the index, page numbers written like 1 reference the defining sections for the corresponding
entries while other numbers (like 1) are less important references. Furthermore, the name of
each OCaml value in the index corresponds to an actual Frama-C value. In the Frama-C source
code, the ocamldoc documentation of such a value contains the special tag @plugin development
guide while, in the html documentation of the Frama-C API, the note “Consult the Plugin
Development Guide for additional details” is attached the value name.

Most important paragraphs are displayed inside a gray box like this one. A plug-in developer
must follow them very carefully.

Outline This guide is organised in four parts. The first one, Chapter 2, is a step-by-step
tutorial for developing a new plug-in within the Frama-C platform. At the end of this tutorial, a
developer should be able to extend Frama-C with a simple analysis available to both the Frama-C
command line and other plug-in developments. The second part, Chapter 3, presents the design
of the Frama-C software architecture. The third part, Chapter 4, details how to use all the
services provided by Frama-C in order to develop a fully integrated plug-in. The fourth part,
Chapter 5, is a reference manual with complete documentation for some particular points of the

10 Introduction

Frama-C platform.

Frama-C Plug-in Development Guide CAT RNTL project

Chapter 2

Tutorial

Target readers: beginners.

This chapter aims at helping a developer to write his first Frama-C plug-in. At the end of this
tutorial, this developer should be able to extend Frama-C with a simple analysis available to both
the Frama-C command line and other plug-ins. This chapter was written to explain step-by-step
how to proceed towards this goal. This tutorial explains how to integrate a plug-in inside the
Frama-C platform. It will get you started but does not tell the whole story. In particular, some
very important aspects for the integration in the framework are omitted here and are described
in chapter 4.

Section 2.1 explains everything you need to know to write a dynamic plug-in: writing a dynamic
plug-in is the new preferred way to interface with Frama-C. Section 2.2 explains in detail how to
write a static plug-in: this is slightly more involved but allows a deeper integration within the
Frama-C architecture. You should do this only if you intend to contribute a large and general
purpose plug-in to the community.

2.1 Dynamic Plug-in

This section will teach you how to write the most basic dynamic plug-in and run it from the
Frama-C toplevel.

Dynamic plug-ins are a new important feature of Frama-C Lithium-20081212: the way Frama-C
manages them may change in future release. However, if you follow the guideline given in this
manual, it will be easy to switch from this implementation of dynamic plug-ins to a future one.

2.1.1 Setup

To follow this tutorial you have to fulfill the following requirements:

• Frama-C needs to be installed in your path;

• the Objective Caml compilers must be installed in your path. These must be the same
compilers as the ones you used to compile Frama-C1;

1If you have an Objective Caml version <3.11 then only bytecode plug-ins are available. Upgrade to Objective
Caml >=3.11 if you need native code plug-ins.

12 Tutorial

• GNU make must be in your path.

2.1.2 Plug-in Integration Overview

Figure 2.2 shows how a dynamic plug-in can integrate with the Frama-C platform. This tutorial
focuses on some parts only of this figure.

Register

Part not covered
in this tutorial

Plugin directory

...

(GUI extension point)

...

Options

Cmdline

Main

Caption:

Registration through
hook

Plugin implementation

Plugin GUI⋆

Project⋆ Design⋆

⋆

Db⋆

Makefile

Figure 2.1: Dynamic plug-in Integration Overview.

The implementation of the plug-in is provided inside a specific directory. The plug-in registers
with the Frama-C platform through kernel-provided registration points. These registrations are
performed through hooks (by applying a function or a functor). For instance, the next section
shows how to:

• extend the Frama-C entry point defined in module Main if you want to run plug-in specific
code when Frama-C is executed;

• add a new Frama-C option registered in module Cmdline;

• extend the Frama-C command line through module Options in order to add a new plug-in
specific option.

2.1.3 Hello Frama-C World

A very basic plug-in is the ’Hello World’ plug-in. This plug-in adds a command line option
-hello to Frama-C and pretty prints the message ’Hello Frama-C World!’ whenever the option
is set.

The ’Hello World’ plug-in consists of only two files: Makefile and hello_world.ml.

1. Create the two files Makefile and hello_world.ml containing the lines given in the frames
at the end of this section.

The name of each compilation unit (here hello_world) must be different of the plug-in
name set by the Makefile (here hello) in order to compile a plug-in.

Frama-C Plug-in Development Guide CAT RNTL project

2.2 Static Plug-in 13

2. Run make to compile it.

3. Run make install to install the plug-in. You need to have write access to the
$(FRAMAC_SHARE)/plugins directory.

4. Test your plug-in with frama-c.byte -hello. The sentence ’Hello Frama-C World!’ is
printed.

File Makefile

Generic tiny Makefile for dynamic plug−ins
FRAMAC_SHARE=$(shell frama−c −print−path)
PLUGIN_NAME=hello
PLUGIN_SRC=hello_world.ml
include $(FRAMAC_SHARE)/Makefile.template

File hello_world.ml

(** The traditional Hello world! plug−in.
It contains one boolean state Enabled which can be set by the command
line option "−hello". When this option is set it just pretty prints a
message on the standard error. *)

(** Register a new Frama-C option. *)
module Enabled =

Cmdline.Dynamic.Register.False(struct let name = "hello enabled" end)

(** Print ’Hello Frama−C World!’ whenever the option is set. *)
let startup fmt =

if Enabled.get () then Format.fprintf fmt "Hello Frama−C World!"

(** Extend the Frama-C command line. *)
let () =

Options.add_plugin
˜name:"hello" (* plug−in name *)
˜descr:"Hello World plugin" (* plug−in description *)
["−hello", (* plug−in option *)

Arg.Unit Enabled.on,
": print \"Hello Frama−C World!\""]

(** Extend the Frama-C entry point (the "main" of Frama-C). *)
let () = Db.Main.extend startup

2.2 Static Plug-in

Target readers: not for developers of dynamic plug-ins. It is only for:

Frama-C Plug-in Development Guide CAT RNTL project

14 Tutorial

• beginners which have to implement a plug-in requiring a very deep integration with the
Frama-C architecture;

• new Frama-C-kernel developers.

This section will teach you how to write the most basic static plug-in and run it from the Frama-C
toplevel. This plug-in will be linked with the Frama-C kernel and with all the other static plug-ins.
It is slightly more involved but allows a deeper integration within the Frama-C architecture.

2.2.1 Setup

If you have a CVS access to the Frama-C repository, you can download the sources for Frama-C
with the CVS command below2 where login is your CVS login and cvsserver is the name of the
Frama-CCVS server name3.

$ cvs -d :ext:login @servername /ppc/ppc co

Once you have the sources, you are ready for compilation. Frama-C uses a makefile which
is generated by the script configure. This script checks your system to determine the most
appropriate Frama-C configuration, in particular the plug-ins that should be available. This file
is itself generated by the autotool autoconf. Consequently, you have to execute the following
commands:

$ autoconf
$./configure

This generates a proper makefile and lists the available plug-ins. Now you are able to compile
sources with make.

$ make -j

This compilation produces the following binaries (in a standard configuration):

• bin/toplevel.byte and bin/toplevel.opt (Frama-C toplevel);

• bin/viewer.byte and bin/viewer.opt (Frama-C GUI);

• bin/ptests.byte (Frama-C testing tool).

Suffixes .byte and .opt respectively correspond to the bytecode and native versions of binaries.
If you wish, and before having fun with Frama-C, you can:

• test the compiled platform with make tests;

• generate the source documentation with make doc;

• generate navigation tags for emacs with make tags.
2Character ’$’ (dollar) represents a shell prompt in all commands.
3You have to contact CEA in order to obtain the exact server name and a login.

Frama-C Plug-in Development Guide CAT RNTL project

2.2 Static Plug-in 15

2.2.2 Plug-in Integration Overview

Figure 2.2 shows how a plug-in should be integrated in the Frama-C platform. Most of the
elements in this figure are pragmatically explained in the remaining sections of this tutorial.

Part not covered
in this tutorial

Caption:

Registration through
hook

Registration through
file modification

Register

Plugin directory

...

(GUI extension point)

...

Plugin implementation

Makefile.in configure.in...

Plugin tests suite

Options

Db

Cmdline

Main

(Empty) plugin interface

⋆

Project⋆ Design⋆

Plugin GUI⋆

Figure 2.2: Static plug-in Integration Overview.

The implementation of the plug-in is provided inside a specific directory and is connected to the
Frama-C platform thanks to some registration points. These registrations are performed either
through hooks (function/functor applications or setting of references) or directly by modifying
some specific part of Frama-C modules. For example, you have:

• to extend Db with your plug-in-specific operations and to register them inside it if you want
that someone uses your plug-in (see Section 2.2.5);

• to extend the Frama-C entry point defined in module Main if you want to run plug-in
specific code when Frama-C is executed (see Section 2.2.6);

• to add a sub-module inside module Cmdline and to apply a function defined in module
Options if you want to add a new plug-in specific option to the Frama-C command line
(see Section 2.2.6).

You also have to modify the files Makefile.in and configure.in in order to properly link your
plug-in with Frama-C (see Section 2.2.4).

Moreover, the developer may provide a plug-in interface (which should usually be empty, see
Section 2.2.5) and specific test suites (see Section 2.2.7).

Frama-C Plug-in Development Guide CAT RNTL project

16 Tutorial

2.2.3 Hello Frama-C World

This section explains how to write the core of a Hello plug-in. This is a plug-in which pretty-
prints ’Hello Frama-C World!’ whenever the option -hello is set on the Frama-C command line.
It is possible to program such an option just with the module Arg provided by the Objective
Caml standard library and without the addition of a Frama-C plug-in, but we use this example to
introduce the bases of plug-in development. This plug-in is our running example in this chapter.

First, we add a new subdirectory hello in directory src.

$ mkdir src/hello

This new directory is going to contain the source file of our new plug-in4. If you want, you can
have a quick look at src which contains the kernel and existing plug-ins. We only use a few files
of this directory in this tutorial.

We can now edit the source file of hello, called src/hello/register.ml.

Recommendation 2.1 In Frama-C, the name of the “main” file of a plug-in p should always be
called either register.ml or p_register.ml.

File src/hello/register.ml

let run fmt = Format.fprintf fmt "Hello Frama−C World!"

This file defines a function run which prints ’Hello Frama-C World!’ on the given formatter.

At this point, we have a compilable plug-in made of a main function run.

2.2.4 Configuration and Compilation

Here we explain how to compile the plug-in hello. Section 4.2 and 4.3 provide more details
about the configuration and compilation of plug-ins.

Configuration As explained in Section 2.2.1, Frama-C uses both autoconf and make in order
to compile. Consequently, we have to modify both files configure.in and Makefile.in in order
to compile our plug-in within Frama-C. In both files, some predefined scripts help with plug-in
integration.

In order to compile the hello plug-in, first add the following lines into configure.in5. They
indicate how to configure hello, especially whether it has to be compiled or not.

File configure.in
. . . /. . .

4As the plug-in hello is tiny, it has only one source file.
5In this document, a comment containing ... among lines of code represents an undisplayed piece of code

written either previously in the document or by someone else.

Frama-C Plug-in Development Guide CAT RNTL project

2.2 Static Plug-in 17

. . . /. . .
· · · Add the following lines after other plug−in configurations.
hello
#######
check_plugin(hello,src/hello,[support for hello plug−in],yes)

These lines correspond to the standard scheme for configuring a new plug-in. Function
check_plugin is defined in configure.in. Its first argument is the plug-in name, the second
one is the plug-in directory (the directory containing the plug-in source files), the third one is a
help message and the fourth one indicates whether the plug-in is available by default or not (here
yes says that the plug-in is available by default and an user may use option –disable-hello to
disactivate the plug-in).

Now we are ready to execute

$ autoconf
$./configure

and to check that the new plug-in hello is going to compile: you should have the line

checking for src/hello... yes
hello... yes

in the configuration summary.

Compilation Once configure.in is extended, we also have to modify Makefile.in with the
following lines.

File Makefile.in

· · · Add the following lines after other plug−ins compilation directives.
#########
Hello
#########
PLUGIN_ENABLE:=@ENABLE_HELLO@
PLUGIN_NAME:=Hello
PLUGIN_DIR:=src/hello
PLUGIN_CMO:= register
PLUGIN_NO_TEST:=yes
include Makefile.plugin

These lines use the predefined makefile Makefile.plugin which is a generic makefile dedicated
to the compilation of one plug-in. There are more than twenty variables than can be used to
customize the behavior of Makefile.plugin. These variables are all described in Section 5.3.2,
but most of them have reasonable default values so that it is not necessary to describe more than
the few above.

Now we briefly explain the variables that are set for hello.

Frama-C Plug-in Development Guide CAT RNTL project

18 Tutorial

• PLUGIN_ENABLE indicates that the plug-in should be compiled. Here we use the variable
@ENABLE_HELLO@ set by configure.in.

• PLUGIN_NAME is the name of the plug-in.

The variable PLUGIN_NAME must hold a valid OCaml module name (in particular it must
be capitalised).

• PLUGIN_DIR is the directory containing the source file(s) for the plug-in.

• PLUGIN_CMO is the list of the .cmo files (without the extension .cmo nor the plug-in path)
required to compile the plug-in.

• PLUGIN_NO_TEST is set to yes because there is no specific test directory for the plug-in (see
Section 2.2.7 about plug-in testing).

Now we are ready to compile Frama-C with the new plug-in hello.

$ make -j

2.2.5 Connection with the Frama-C World

The plug-in hello is now compiled but it is not registered within the Frama-C framework. In
particular, our plug-in should be added in the plug-in database Db in order to be used by other
plug-ins (see Chapter 3 for details).

Extension of the Plug-in Database For this purpose, we have to extend Db with the new
plug-in hello.

File src/kernel/db.mli

· · ·
(** Hello World plug−in.

@see <../hello/index.html> internal documentation. *)
module Hello : sig
val run: (Format.formatter → unit) ref (** Print "hello world". *)

end
· · ·

File src/kernel/db.ml
· · ·
module Hello = struct let run = mk_fun "Hello_world.run" end
· · ·

The interface declares a new module Hello containing a single function run. Indeed run is
a reference to a function. This reference is not initialised in the implementation of Db: we
use mk_fun (declared in the opened module Extlib) in order to declare the reference without

Frama-C Plug-in Development Guide CAT RNTL project

2.2 Static Plug-in 19

instantiating it. This instantiation has to be done by the plug-in itself. Otherwise, a call to
!Db.run raises the exception Extlib.NotYetImplemented. In order to fix this, we modify the
module Register as follows.

File src/hello/register.ml

· · · definition of run
let () = Db.Hello.run := run

It is important to note that the reference Db.Hello.run is set at the OCaml module initialisation
step. So the body of each Frama-C function can safely dereference it.

Documentation We have properly documented the interface of Db with ocamldoc through
special comments between (** and *). This documentation is generated by make doc. In
particular, this command also generates an internal documentation for hello which is accessible
in the directory doc/code/hello.

Hiding the Implementation Finally, we hide the implementation of hello to other devel-
opers in order to enforce the architecture invariant which is that each plug-in should be used
through Db (see Chapter 3). For this purpose we add an empty interface to the plug-in in the
following way.

File src/hello/Hello.mli

(** Hello World plug−in.

No function is directly exported: they are registered in {!Db.Hello}. *)

Note the unusual capitalisation of the filename Hello.mli which is required for compilation
purposes.

Indeed, thanks to Makefile.plugin, each plug-in is packed into a single module $(PLUGIN_NAME)
(here Hello) and we simply export an empty interface for it.

We also have to explain to Makefile.plugin that we use our own interface hello.mli for Hello.
For this purpose, in Makefile.in, we add the following line before including Makefile.plugin.

File Makefile.in

· · · Setting others variables for hello
PLUGIN_HAS_MLI:=yes
· · · include Makefile.plugin

Frama-C Plug-in Development Guide CAT RNTL project

20 Tutorial

2.2.6 Extending the Command Line

In order to complete our plug-in, we have to register an option and to extend the command-line.
Then, we have to make sure the function !Db.Hello.run is executed when this option is set.
Section 4.8 provides more details about extensions of the command line.

First we add a value in the module Cmdline which indicates if the user has set the option
-hello on the command line (i.e. whether we have to print the input files via the execution of
!Db.Hello.run or not).

File src/kernel/cmdline.mli

· · ·
(** {3 Hello} *)

module Hello: sig
module Print: BOOL (** Whether to run hello or not. *)

end
· · ·

File src/kernel/cmdline.ml
· · ·
module Hello = struct
module Print = False(struct let name = "Cmdline.Hello.Print" end)

end
· · ·

Cmdline contains all the options of Frama-C and its static plug-ins. The above lines of code add
a module Hello with all the options for hello. In fact, the plug-in Hello has only one option,
called print. In Frama-C, each such option is a module. The signature of the module indicates
the type of the option: in this case, it is a boolean option (whether to print the input files of
Frama-C or not). In order to implement this option, we use a functor, called False and defined
in top of Cmdline, which initialises it to false (i.e. the option is unset by default).

Once we have introduced this value, we can add the option -hello to the toplevel command line
by extending the plug-in hello.

File src/hello/register.ml

· · ·
let () =

Options.add_plugin
˜name:"hello" (* plug−in name *)
˜descr:"Hello World plugin" (* plug−in description *)
["−hello", (* plug−in option *)

Arg.Unit Cmdline.Hello.Print.on,
": print \"Hello Frama−C World!\""]

We call Options.add_plugin. This function integrates the new option -hello and modifies the

Frama-C Plug-in Development Guide CAT RNTL project

2.2 Static Plug-in 21

value contained in Cmdline.Hello.Print as well. This function also adds information about the
plug-in hello when the predefined option -help is set by the user.

Finally we extend the “main” of Frama-C (i.e. its entry point) in order to execute the new plug-in
whenever its option is set. For this purpose, we augment file src/hello/register.ml in the
following way.

File src/hello/register.ml

let startup fmt = if Cmdline.Hello.Print.get () then !Db.Hello.run fmt;
let () = Db.Main.extend startup

At this point, the plug-in works properly: all the programming work is done and a Frama-C user
can run the plug-in safely.

$ frama-c -hello foo.c bar.c baz.c
Parsing
Cleaning unused parts
Symbolic link
Starting semantical analysis
Hello Frama-C World!

2.2.7 Testing

Frama-C provides a tool, called ptests, in order to perform non-regression and unit tests. This
tool is detailed in Section 4.4. This section only covers basic use of ptests. First we have to
create a test directory for hello

$ mkdir tests/hello

and, in Makefile.in, we have to remove the line PLUGIN_NO_TEST:=yes.

File Makefile.in

· · · Place of variables of plug−in hello
PLUGIN_NO_TEST:=yes # unset this variable

Now we can add the following test hello.c in directory tests/hello.

File tests/hello/hello.c

/* run.config
. . . /. . .

Frama-C Plug-in Development Guide CAT RNTL project

22 Tutorial

. . . /. . .
OPT: −hello

*/
/* A test of the plug−in hello does not require C code anyway. */

It is possible to test the new plug-in on this file with the command

$./bin/toplevel.byte -hello tests/hello/hello.c

which should display

[preprocessing] running gcc -C -E -I. tests/hello.c
Parsing
Cleaning unused parts
Symbolic link
Starting semantical analysis
Hello Frama-C World!

The specific output of the plug-in hello is the last line.

It is also possible to use ptests to run tests automatically.

$./bin/ptests.byte hello

The above command runs the Frama-C toplevel on each C file contained in the directory
tests/hello. For each of them, it also uses directives following run.config given at the top of
files. Here, for the test tests/hello/hello.c, the directive specifies that the toplevel has to be
executed with the option -hello. Below is the output of this command.

% Dispatch finished, waiting for workers to complete
% System error while comparing. Maybe one of the files is missing...
tests/hello/result/hello.res.log or tests/hello/oracle/hello.res.oracle
% System error while comparing. Maybe one of the files is missing...
tests/hello/result/hello.err.log or tests/hello/oracle/hello.err.oracle
% Comparisons finished, waiting for diffs to complete
% Diffs finished. Summary:
Run = 1
Ok = 0 of 2

This result says that testing fails because it is not possible to compare the execution results with
previously stored results (oracles). You have to execute:

$./bin/ptests.byte -update hello

Frama-C Plug-in Development Guide CAT RNTL project

2.2 Static Plug-in 23

Thus each time one executes ptests.byte, differences with the saved oracles are displayed.
Furthermore, you can easily check whether the changes in plug-in hello are compliant with all
existing tests. For example, if we execute one more time:

$./bin/ptests.byte hello
% Diffs finished. Summary:
Run = 2
Ok = 2 of 2

This indicates that everything is alright.

Finally, you can also check if your changes break something else in the Frama-C kernel or in
other plug-ins by executing ptests on all default tests with make tests. It is also possible to add
plug-in hello to the default test suite by editing the value of the variable default_suites in
the file ptests/config.ml.

Note to CVS users If you have write access to the CVS repository, you can commit your
changes into the archive. Before that, you have to perform non-regression tests in order to
ensure that the modification does not break the archive.

So you must execute the following commands.

$ cvs add ... # Do not forget new oracles
$ cvs up
$ make tests
$ cvs commit -m "informative message"

If you created any new files, use the cvs add command to add them into the archive. The cvs
up command updates your local directory with respect to the root repository. The make tests
command performs the non-regression tests. Finally, if and only if the regression tests do not
expose any problem, you can commit your changes thanks with the cvs commit command.

2.2.8 Copyright your Work

Target readers: developers with a CVS access.

If you want to redistribute plug-in hello, you have to choose a license policy for it (compatible
with Frama-C). Section 4.13 provides details about how to proceed. Here, suppose we want to
put the plug-in hello under the Lesser General Public License (LGPL) and CEA copyright, you
simply have to edit the section “File headers: license policy” of Makefile.in with the following
line:

File Makefile.in

CEA_LGPL= src/hello/*.ml* # · · · others files

Now executing:

Frama-C Plug-in Development Guide CAT RNTL project

24 Tutorial

$ make headers

This adds an header on files of plug-in hello in order to indicate that they are under the desired
license.

Frama-C Plug-in Development Guide CAT RNTL project

Chapter 3

Software Architecture

Target readers: beginners.

In this chapter, we present the software architecture of Frama-C. First, Section 3.1 presents its
general overview. Then, we focus on three different parts:

• Section 3.2 introduces the API of Cil [11] seen by Frama-C;

• Section 3.3 shows the organisation of the Frama-C kernel;

• and Section 4.5 explains the plug-in integration.

3.1 General Description

Frama-C (Framework for Modular Analyses of C) is a software platform which helps the devel-
opment of static analysis tools for C programs thanks to a plug-ins mechanism. This platform
has to provide services in order to ease

• analysis and source-to-source transformation of big-size C programs;

• addition of new plug-ins;

• and plug-ins collaboration.

In order to reach these goals, Frama-C is based on a software architecture with a specific design
which is presented in this document. Figure 3.1 summarizes it. Mainly this architecture is
separated in three different parts:

• Cil (C Intermediate Language) [11] extended with an implementation of the specifica-
tion language ACSL (ANSI/ISO C Specification Language) [1]. That is the intermediate
language upon which Frama-C is based. See Section 3.2 for details.

• The Frama-C kernel. That is a toolbox on top of Cil dedicated to static analyses. It provides
data structures and operations which help the developer to deal with the Cil AST (Abstract
Syntax Tree). See Section 3.3 for details.

• Frama-C plug-ins. That is analyses or source-to-source transformations which use the kernel
and possibly others plug-ins through the plug-ins database called Db (and the interface for
dynamic plug-ins called Dynamic). See Section 4.5 for details.

26 Software Architecture

depends of

registers in

AST Manipulations

Abstract Interpretation Lattices

Utilities

Memory States

Extended Cil API

Lexing, Parsing, Typing, Linking
Extended Cil Kernel

Extended Cil AST

Project

Plug−in 1 Plug−in nPlug−in 2

Plug−in
types m

Plug−in
types 1

Plug−in
types 2

Db
Frama−C Plugins

Frama−C Kernel

Extended Cil

Dynamic

Figure 3.1: Architecture Design.

Frama-C Plug-in Development Guide CAT RNTL project

3.2 Cil: C Intermediate Language 27

3.2 Cil: C Intermediate Language

Cil [11] is a high-level representation along with a set of tools that permit easy analysis and
source-to-source transformation of C programs.

Frama-C uses Cil as a library which performs the main steps of the compilation of C programs
(pre-processing, lexing, parsing, typing and linking) and outputs an abstract syntax tree (AST)
ready for analysis. From the Frama-C developer’s point of view, Cil is a toolbox usable through
its API and providing:

• the AST description (module Cil_types);

• useful AST operations (module Cil);

• some simple but useful miscellaneous datastructures and operations (mainly in module
Cilutil); and

• some syntactic analysis like a (syntactic) call graph computation (module Callgraph) or
generic forward/backward dataflow analysis (module Dataflow).

Frama-C indeed extends Cil with ACSL (ANSI/ISO C Specification Language) [1], its specification
language. The extended Cil API consequently provides types and operations in order to properly
deal with annotated C programs.

Cil modules belong to directory (and subdirectories of) cil/src.

3.3 Kernel

On top of the extended Cil API, the Frama-C kernel groups together different kinds of modules
which are described below.

• In addition to the Cil utilities, Frama-C provides useful operations (mainly in module
Extlib) and datastructures (e.g. specialised version of association tables like Rangemap).
These modules belong to directories src/lib and src/misc and they are not specific to
analysis or transformation of C programs.

• Frama-C provides generic lattices useful for abstract interpretation (module
Abstract_interp) and some pre-instantiated arithmetic lattices (module Ival). The
abstract interpretation toolbox is available in directory src/ai.

• Frama-C also provides different representations of C memory-states (module Locations)
and data structures using them (e.g. association tables indexing by memory-states in
modules Lmap and Lmap_bitwise). The memory-state toolbox is available in directory
src/memory_state.

• Moreover, directory src/kernel provides a bunch of very helpful operations over the ex-
tended Cil AST. For example, module Globals provides operations dealing with global
variables, functions and annotations while module Visitor provides inheritable classes in
order to permit easy visiting, copying or in-place modification of the AST.

Besides, in directory src/project, the Frama-C kernel embeds a library, called Project, which
permits the consistency of results for multi-analysis of multi-ASTs in a dynamic setting. This
library is quite independent of Frama-C and may be used anywhere, exactly as an external library.

Frama-C Plug-in Development Guide CAT RNTL project

28 Software Architecture

3.4 Plug-ins

In Frama-C, plug-ins are analysis or source-to-source transformations. Each of them is an ex-
tension point of the Frama-C kernel. Frama-C allows plug-in collaborations: a plug-in p can use
a list of plug-ins p1, . . . , pn and conversely. Mutual dependences between plug-ins are even
possible. If a plug-in may be used by another plug-in, it has to be registered. There are two
different ways to register a plug-in and to access to it, depending on whether the plug-in is static
or dynamic. Static plug-ins have to register them by editing module Db while dynamic plug-ins
have to register them through module Dynamic. Similarly, using a function of a static plug-in
requires to call a function of module Db while using a function of a dynamic plug-in requires to
call a function of module Dynamic.

Besides, static plug-ins may define their own datatypes (eventually coming with some specific
operations) which can be visible from outside (usually because the plug-in API uses them). In
order to keep as small as possible the plug-ins database Db, these datatypes are put outside of it.
For visibility purpose, they are also put outside their plug-in owners. That is the raison d’être
of plug-ins types. See Section 4.5.1 for additional details.

Even if the raison d’être of a dynamic plug-in is to be dynamically loaded by Frama-C, it is
still possible to statically linked it with Frama-C and to use it as a static plug-in. For instance,
exporting datatypes is possible for a dynamic plug-in statically linked with Frama-C.

Frama-C Plug-in Development Guide CAT RNTL project

Chapter 4

Advanced Plug-in Development

This chapter details how to use services provided by Frama-C in order to be fully operational
with the development of plug-ins. Each section describes technical points a developer should be
aware of. Otherwise, one could find oneself in one or more of the following situations 1 (from
bad to worse):

1. reinventing the (Frama-C) wheel;

2. being unable to do some specific things (e.g. saving results of your analysis on disk, see
Section 4.6.3);

3. introducing bugs in your code;

4. introducing bugs in other plug-ins using you code;

5. breaking the kernel consistency and so potentially breaking all the Frama-C plug-ins (e.g.
if you modify the AST without changing of project, see Section 4.6.2).

In this chapter, we suppose that the reader is able to write a minimal plug-in like hello de-
scribed in chapter 2 and knows about the software architecture of Frama-C 3. Moreover plug-in
development requires to use autoconf, make and advanced features of OCaml (module system,
classes and objects, etc). Each section summarizes its own prerequisites at its beginning (if any).

Note that the following subsections can be read in no particular order: their contents are indeed
independent from one another. Pointers to reference manuals (Chapter 5) are also provided for
readers who want full details about specific parts.

4.1 File Tree Overview

Target readers: beginners.

The Frama-C main directory is split in several sub-directories. Frama-C source code is mostly
provided in directories cil and src. The first one contains the source code of Cil [11] extended
with an ACSL [1] implementation. The second one is the core implementation of Frama-C. This
last directory contains directories of the Frama-C kernel and directories of the provided Frama-C
plug-in.

A (quite) complete description of the Frama-C file tree is provided in Section 5.1.
1It is fortunately quite difficult (but not impossible) to fall into the worst situation by mistake if you are not

a kernel developer.

30 Advanced Plug-in Development

4.2 Configure.in

Target readers: not for dynamic plug-ins developers.

Prerequisite: knowledge of autoconf and shell programming.

In this Section, we detail how to modify the file configure.in in order to configure plug-ins
(Frama-C configuration has been introduced in Section 2.2.1 and 2.2.4).

First Section 4.2.1 introduces the general principle and organisation of configure.in. Then
Section 4.2.2 explains how to configure a new simple plug-in without any dependency. Next we
show how to exhibit dependencies with external libraries and tools (Section 4.2.3) and with other
plug-ins (Section 4.2.4). Finally Section 4.2.5 presents the configuration of external libraries and
tools needed by a new plug-in but not used anywhere else in Frama-C.

4.2.1 Principle

When you execute autoconf, file configure.in is used to generate script configure. Each
Frama-C user executes this script which checks his system to determine the most appropriate
configuration: at the end of this configuration (if it is successful), the script summarizes the
status of each plug-in which can be:

• available (everything is fine with this plug-in);

• partially available: either an optional dependency of the plug-in is not fully available, or a
mandatory dependency of the plug-in is only partially available; or

• not available: either the plug-in itself is not provided by default, or a mandatory depen-
dency of the plug-in is not available.

The important notion in the above definitions is dependency . A dependency of a plug-in p is
either an external library/tool or another Frama-C plug-in. It is either mandatory or optional.
A mandatory dependency must be present in order to build p, whereas an optional dependency
provides to p additional but not highly required features (especially pmust be compilable without
any optional dependency).

Hence, for the plug-in developer, the main role of configure.in is to define the optional and
mandatory dependencies of each plug-in. Another standard job of configure.in is the addition
of options –-enable-p and –-disable-p to configure for a plug-in p. These options respectively
forces p to be available and disables p (its status is automatically “not available”).

Indeed configure.in is organised in different sections specialised in different configuration
checks. Each of them begins with a title delimited by comments and it is highlighted when
configure is executed. These sections are described in Section 5.2. Now we focus on the modi-
fications to perform in order to integrate a new plug-in in Frama-C.

4.2.2 Addition of a Simple Plug-in

In order to add a new plug-in, there are three actions to perform:

1. add a new subsection for the new plug-in to Section Plugin wished ;

Frama-C Plug-in Development Guide CAT RNTL project

4.2 Configure.in 31

2. add a new substitution in Section Substitutions to perform;

3. add a new entry in Section Summary.

All these actions are very easy to perform by copying/pasting from another existing plug-in (e.g.
occurrence) and by replacing the plug-in name (here occurrence) by the new plug-in name in
the pasted part. In these sections, plug-ins are sorted according to a lexicographic ordering.

Let us illustrate how these actions are done by an example: say we want want to define a plug-in
called occurrence.

First, Section Wished Plug-in introduces a new sub-section for this plug-in in the following way.

occurrence
############
check_plugin(occurrence,src/occurrence,[support for occurrence analysis], yes)

The first argument is the plug-in name, the second one is the name of directory containing the
source files of the plug-in, the third one is a help message for the –enable-occurence option of
configure and the last one indicates if the plug-in is enabled by default.

The macro check_plugin sets the following variables: FORCE_OCCURRENCE, REQUIRE_OCCURRENCE,
USE_OCCURRENCE and ENABLE_OCCURRENCE.

The first one indicates if the user explicitly requires the availability of occurrence via setting the
option –-enable-occurrence. The second and third ones are used by others plug-ins in order to
handle their dependencies (see Section 4.2.4). Finally ENABLE_OCCURRENCE indicates the plug-in
status (available, partially available or not available). At the end of these lines of code, it says
if the plug-in should be compiled: if –-enable-occurrence is set, then ENABLE_OCCURRENCE is
yes (plug-in available); if –-disable-occurrence, then its value is no (plug-in not available).
If no option is specified on the command line of configure, its value is set to the default one
(according to $default).

Section Substitutions to perform adds respectively a new substitution in Makefile.in thanks to
the line:

AC_SUBST(ENABLE_OCCURRENCE)

Similarly Section Summary adds a new entry in the summary thanks to the line:

AC_MSG_NOTICE([occurrence : $ENABLE_OCCURRENCE$INFO_OCCURRENCE])

The value @ENABLE_OCCURRENCE@ is then usable in Makefile.in in order to know whether the
plug-in has to be compiled or not (see Section 4.3) and a notification indicating this value as well
as an optional informative message (contained in $INFO_OCCURRENCE) is displayed to the user.

4.2.3 Addition of Library/Tool Dependencies

Three different variables are set for each external library and tool used in Frama-C which are

Frama-C Plug-in Development Guide CAT RNTL project

32 Advanced Plug-in Development

• HAS_library

• REQUIRE_library

• USE_library

where library is the name of the considered library or tool (see Section 4.2.5 for explanations
about their initialisations and their uses).

HAS_library indicates whether the library is available on this platform (its value is yes) or not
(its value is no). This last value is accessible in Makefile.in through the variable @HAS_library@
(see Section 4.3). Actually we are not concerned by this value in this section.

REQUIRE_library (resp. USE_library) is a list of plug-in names (separated by spaces). It contains
the plug-ins for which library is a mandatory (resp. an optional) dependency. So you have to
extend these lists in order to add some library/tool dependencies for a new plug-in p.

Recommendation 4.1 The best place to perform such extensions is just after the addition of
p which sets the value of ENABLE_p.

Example 4.1 Plug-in gui requires Lablgtk2 [7]. So, just after its declaration, there are the
following lines in configure.in.

if test "$ENABLE_GUI" == "yes"; then
REQUIRE_LABLGTK=${REQUIRE_LABLGTK}" gui"

fi

These lines specify that Lablgtk2 must be available on the system if the user wants to compile
gui.

4.2.4 Addition of Plug-in Dependencies

Adding a dependency with another plug-in is quite the same as adding a dependency with
an external library or tool (see Section 4.2.3). For this purpose, configure.in uses vari-
ables REQUIRE_plugin and USE_plugin (in the same way that variables REQUIRE_library and
USE_library: they are lists of plug-in names for which plugin is respectively a mandatory depen-
dency or an optional dependency).

From the viewpoint of a plug-in developer , the difference between libraries and tools is that
the best place to indicate such dependencies is not just after the addition of the plug-in: needed
variables REQUIRE_plugin and USE_plugin could be undeclared at this point (in particular in the
case of mutually dependent plug-ins). So dependency indications are postponed at the top of
Section Plug-in dependencies of configure.in.

Example 4.2 Plug-In value requires plug-in from and may use plug-in gui (for ValViewer [2]).
So lists REQUIRE_FROM and USE_GUI contain value. Moreover, as many plug-ins require value,
list REQUIRE_VALUE is quite big. In particular, it contains plug-in from: both plug-ins value and
from are indeed mutually dependent.

Frama-C Plug-in Development Guide CAT RNTL project

4.2 Configure.in 33

4.2.5 Configuration of New Libraries or Tools

Configuration of new libraries and configuration of new tools are similar. In this section, we
therefore choose to focus on the configuration of new libraries.

Section 4.2.3 explains how to depend on some external library library. Nevertheless if library is
not used by Frama-C anywhere else, you have to configure it.

First, you have to declare the three variables set by each library: HAS_library, USE_library
and REQUIRE_library. This is performed in Section Configuration of Plug-in Libraries of file
configure.in. You should not assign values to these variables (just declare them).

Next, you have to export HAS_library in Makefile.in through AC_SUBST(HAS_library) in Section
Makefile Creation of configure.in.

Last but not least, you have to check that the library is available on the user system. A predefined
macro called configure_library helps the plug-in developer in this task2. configure_library
takes three arguments. The first one is the (uppercase) name of the library, the second one
is a filename which is used by the script to check the availability of the library. In case there
are multiple locations possible for the library, this argument can be a list of filenames. In
this case, the argument must be properly quoted (i.e. enclosed in a [,] pair). Each name is
checked in turn. The first one which corresponds to an existing file is selected and put in the
variable SELECTED_$library$. If no name in the list corresponds to an existing file, the library is
considered to be unavailable. The last argument is a warning message to display if a configuration
problem appear (usually because the library does not exist). Using these arguments, the script
checks the availability of the library and, according to it, disables (resp. partially disables) the
plug-ins requiring (resp. optionally using) it3.

When checking for Objective Caml libraries and object files, remember that they come in two
flavors: bytecode and native code, which have distinct suffixes. Therefore, you should use the
variables LIB_SUFFIX (for libraries) and OBJ_SUFFIX (for object files) to check the presence of a
given file. These variables are initialized at the beginning of the configure script depending on
the availability of a native-code compiler on the current installation.

Example 4.3 The library Lablgtksourceview (used to have a better rendering of C sources in
the GUI) can be found either as part of Lablgtk2 or as an independent library. This is checked
through the following command:

configure_library(
[GTKSOURCEVIEW],
[$OCAMLLIB/lablgtk2/lablgtksourceview.$LIB_SUFFIX,
$OCAMLLIB/lablgtksourceview/lablgtksourceview.$LIB_SUFFIX],

[lablgtksourceview not found])

Moreover, we want to distinguish the two cases, as the independent library denotes a legacy
version of Lablgtksourceview, which has been merged with Lablgtk2. This is done by pattern-
matching on the variable SELECTED_GTKSOURCEVIEW as shown below:

2For tools, there is a macro configure_tool which works in the same way as configure_library.
3As plug-in dependencies are checked after this check, plug-ins are not recursively disabled here.

Frama-C Plug-in Development Guide CAT RNTL project

34 Advanced Plug-in Development

case $SELECTED_GTKSOURCEVIEW in
$OCAMLLIB/lablgtksourceview/lablgtksourceview.$LIB_SUFFIX)

HAS_LEGACY_GTKSOURCEVIEW=yes
;;

esac

4.3 Makefile.in

Target readers: not for dynamic plug-in developers.

Prerequisite: knowledge of make.

In this section, we detail the use of Makefile.in dedicated to Frama-C compilation. This file
is split in several sections which are described in Section 5.3.1. By default, executing make only
displays an overview of commands. For example, here is the output of the compilation of source
file src/kernel/db.cmo.

$ make src/kernel/db.cmo
Ocamlc src/kernel/db.cmo

If you wish the exact command line, you have to set variable VERBOSEMAKE to yes like below.

make VERBOSEMAKE=yes src/kernel/db.cmo
\

ocamlc.opt -c -w Ael -warn-error A -dtypes -I src/misc -I src/ai
-I src/memory_state -I src/toplevel -I src/slicing_types -I src/pdg_types
-I src/kernel -I src/logic -I src/cxx_types -I src/gui -I lib/plugins -I lib
-I src/lib -I src/project -I src/buckx -I external -I src/project -I src/buckx
-I cil/src -I cil/src/ext -I cil/src/frontc -I cil/src/logic -I cil/ocamlutil
-g src/kernel/db.ml

In order to integrate a new plug-in, you have to extend section “Plug-ins”. For this purpose,
you have to include Makefile.plugin for each new plug-in (hence there are as many lines
include Makefile.plugin as plug-ins). Makefile.plugin is a generic makefile dedicated to
plug-in compilation. Before its inclusion, a plug-in developer can set some variables in order to
customize its behavior. These variables are fully described in Section 5.3.2.

These variables must not be used anywhere else in Makefile.in. Moreover, for setting them,
you must use := and not =4.

Example 4.4 For compiling the plug-in Value, the following lines are added into Makefile.in.

4Using := only sets the variable value from the affectation point (as usual in most programming langages)
whereas using = would redefine the variable value for each of its occurrences in the makefile (see Section 6.2 “The
Two Flavors of Variables” of the GNU Make Manual [6]).

Frama-C Plug-in Development Guide CAT RNTL project

4.4 Testing 35

##################
Value analysis
##################
PLUGIN_ENABLE:=@ENABLE_VALUE@
PLUGIN_NAME:=Value
PLUGIN_DIR:=src/value
PLUGIN_CMO:= state_set kf_state eval kinstr register
PLUGIN_GUI_CMO:=value_gui
PLUGIN_HAS_MLI:=yes
PLUGIN_NO_TEST:=yes
PLUGIN_UNDOC:=value_gui.ml
include Makefile.plugin

As said above, you cannot use the parameters of Makefile.plugin anywhere in Makefile.in.
You can yet use some plugin-in specific variables once Makefile.plugin has been included.
These variables are detailed in Section 5.3.2.

One other variable has to be modified by a plug-in developer if he uses files which do not
belong to the plug-in directory (that is if variable PLUGIN_TYPES_CMO is set). This variable is
UNPACKED_DIRS and corresponds to the list of non plug-in directories containing source files.

A plug-in developer should not modify any other part of Makefile.in or Makefile.plugin.

4.4 Testing

In this section, we present ptests, a tool provided by Frama-C in order to perform non-regression
and unit tests.

ptests runs the Frama-C toplevel on each specified test (which are usually C files). Specific
directives can be used for each test. Each result of the execution is compared from the previously
saved result (called the oracle). Test is successful if and only if there is no difference. Actually
the number of results is twice that the number of tests because standard and error outputs are
compared separately.

First Section 4.4.1 shows how to use ptests. Next Section 4.4.2 explains how to configure tests
through directives. Last Section 4.4.3 describes how to set up various testing goals for the same
test base.

4.4.1 Using ptests

The simplest way of using ptests is through make tests which is roughly equivalent to

$ time ./bin/ptests.byte

This command runs all the tests belonging to a sub-directory of directory tests. ptests also
accepts specific test suites in arguments. A test suite is either a name of a sub-directory in
directory tests or a filename (with its complete path).

Frama-C Plug-in Development Guide CAT RNTL project

36 Advanced Plug-in Development

Example 4.5 If you want to test plug-in sparecode and specific test tests/pdg/variadic.c,
just run

$./bin/ptests.byte sparecode tests/pdg/variadic.c

which should display (if there are 7 tests in directory tests/sparecode)

% Dispatch finished, waiting for workers to complete
% Comparisons finished, waiting for diffs to complete
% Diffs finished. Summary:
Run = 8
Ok = 16 of 16

ptests accepts different options which are used in order to customize one test sequence. These
options are detailed in Section 5.4.

Example 4.6 If code of plug-in plug-in has changed, a typical sequence of tests is the following
one.

$./bin/ptests.byte plug-in
$./bin/ptests.byte -update plug-in
$ make tests

So we first run the tests suite corresponding to plug-in in order to display what tests have been
modified by the changes. After checking the displayed differences, we validate the changes by
updating the oracles. Finally we run all the test suites in order to ensure that the changes do not
break anything else in Frama-C.

4.4.2 Configuration

In order to exactly perform the test that you wish, some directives can be set in three different
places. We indicate first these places and next the possible directives.

The places are:

• inside file tests/test_config;

• inside file tests/subdir/test_config (for each sub-directory subdir of tests); or

• inside each test file, in a special comment of the form

/* run.config
... directives ...

*/

Frama-C Plug-in Development Guide CAT RNTL project

4.4 Testing 37

In each of the above case, the configuration is done by a list of directives. Each directive has to
be on one line and to have the form

CONFIG_OPTION:value

There is exactly one directive by line. The different directives (i.e. possibilities for
CONFIG_OPTION) are detailed in Section 5.4.

Example 4.7 Test tests/sparecode/calls.c declares the following directives.

/* run.config
OPT: −sparecode−analysis
OPT: −slicing−level 2 −slice−return main −slice−print

*/

They say that we want to test sparecode and slicing analyses on this file. Thus running the
following instruction executes two test cases.

$./bin/ptests.byte tests/sparecode/calls.c
% Dispatch finished, waiting for workers to complete
% Comparisons finished, waiting for diffs to complete
% Diffs finished. Summary:
Run = 2
Ok = 4 of 4

4.4.3 Alternative Testing

You may want to set up different testing goals for the same test base. Common cases include:

• checking the result of an analysis with or without an option;

• checking a preliminary result of an analysis, in particular if the complete analysis is costly;

• checking separately different results of an analysis.

This is possible with option -config of ptests, which takes as argument the name of a special
test configuration, as in

$./bin/ptests.byte -config <special_name> plug-in

Then, the directives for this test can be found:

• inside file tests/test_config_<special_name>;

• inside file tests/subdir/test_config_<special_name> (for each sub-directory subdir of
tests); or

Frama-C Plug-in Development Guide CAT RNTL project

38 Advanced Plug-in Development

• inside each test file, in a special comment of the form

/* run.config_<special_name>
... directives ...

*/

All operations for this test configuration should take option -config in argument, as in

$./bin/ptests.byte -update -config <special_name> plug-in

4.5 Plug-in Registration and Access

In this section, we present how to register plug-ins and how to access to them. Actually there
are two different ways to register plug-ins depending on whether they are static or dynamic (cf
Section).

Section 4.5.1 indicates how to register and access to a static plug-in while Section 4.5.2 details
how to register and access to a dynamic plug-in.

4.5.1 Static Registration and Access

Target readers: static plug-ins developers.

A database, called Db (in directory src/kernel), groups together all static plug-ins. It also
provides their API which permit easy plug-in collaborations. Each static plug-in is only visible
through Db. For example, if a plug-in A wants to know the results of another plug-in B, it uses the
part of Db corresponding to B. A consequence of this design is that each plug-in has to register
in Db by setting a function pointer to the right value in order to be usable from others plug-ins.

Example 4.8 Plug-in Impact registers function compute_pragmas in the following way.

File src/impact/register.ml

let compute_pragmas () = · · ·
let () = Db.Impact.compute_pragmas := compute_pragmas

So each developer who wants to use this function calls it by pointer dereferencing like this.

let () = !Db.Impact.compute_pragmas ()

If a static plug-in has to export some datatypes usable by other plug-ins, such datatypes have to
be visible from module Db. Thus they cannot be declared in the plug-in implementation itself like

Frama-C Plug-in Development Guide CAT RNTL project

4.5 Plug-in Registration and Access 39

any other plug-in declaration because postponed type declarations are not possible in Objective
Caml.

The solution is to put these datatype declarations in files linked before Db; hence you have to
put them in another directory than the plug-in directory. The best way is to create a directory
dedicated to types even if it is possible to put a single file in another directory or to put a single
type in an existing file (like src/kernel/db_types.mli).

Recommendation 4.2 The suggested name for this directory is p_types for a plug-in p.

If you add such a directory, you also have to modify Makefile.in by extending variable
UNPACKED_DIRS (see Section 5.3.2).

Example 4.9 Suppose you are writing a plug-in plug-in which exports a specific type t corre-
sponding to the result of the plug-in analysis. The standard way to proceed is the following.

File src/plugin_types/plugin_types.mli

type t = · · ·

File src/kernel/db.mli
module Plugin : sig
val run_and_get: (unit → Plugin_types.t) ref

(** Run plugin analysis (if it was never launched before).
@return result of the analysis. *)

end

File Makefile.in

UNPACKED_DIRS= · · · plugin_types
Extend this variable with the new directory

A bad side effect of this design choice is that export types are not hidden. If you want to hide
them, you have to encapsulate them in modules providing required getters and setters. So you
have now plug-in code outside plug-in implementation which should be linked before Db5. Files
containing this code has to be known by the makefile: set make variable PLUGIN_TYPES_CMO for
this purpose (see Section 5.3.2).

4.5.2 Dynamic Registration and Access

Target readers: dynamic plug-ins developers.

Registration of static plug-ins requires to modify module Db which belongs to the Frama-C ker-
nel. Dynamic plug-ins are fully independent of Frama-C and so cannot modified its kernel.
Consequently, another way is provided for registering a plug-in. It uses module Dynamic.

5A direct consequence is that you cannot use the whole Frama-C functionalities inside this code, such as module
Db.

Frama-C Plug-in Development Guide CAT RNTL project

40 Advanced Plug-in Development

Shortly, you have to use function Dynamic.register in order to register a value from a dynamic
plug-in and you have to use function Dynamic.apply in order to apply a function previously
registered with Dynamic.register.

In this way, you can only register values, not types. Exporting your own types like explained in
Section 4.5.1 is not possible with dynamic plug-ins: you must only use types provided by the
Frama-C kernel. For the implementation of complex protocols involving sharing of custom data
between plug-ins, the use of ACSL annotations [1] is the prefered way to achieve your goal.

Registering a value The signature of Dynamic.registers as follows.

val register: string → ’a Type.t → ’a → unit

The first argument has to be the binding name of the registered OCaml value. It should not
be used for value registration anywhere else in the Frama-C world. It is required for applying
the value in the case of a function (see paragraph below). The second argument is the so-called
type value of the registered value, i.e. an OCaml value representing its type. It is required for
safety reasons when applying the registered value in the case of a function (see paragraph below).
Predefined type values exist in modules Type (for usual OCaml types like int) and Kernel_type
(for usual Frama-C types like Cil_types.varinfo). The third argument is the value itself.

Example 4.10 Here is how function load of the dynamic plug-in Journal_loader is registered.
This function is of type string →unit

File src/journal_loader/register.ml

let load = · · ·
let () =

Dynamic.register
"Journal_loader.load"
(Type.func Type.string Type.unit)
load

If the string "Journal_loader.load" is already used to register a dynamic value, then the ex-
ception FunTbl.AlreadyExists is raised at plugin initialisation time (see Section 4.7).

The function call Type.func Type.string Type.unit returns the type value of string →unit.
Note that, because of the type of Dynamic.register and the types of its arguments, the OCaml
type checker complains if the third argument (here value load) has not the type string →unit.

Calling a previously-registered function The signature of function Dynamic.apply is as
follows.

val apply: string → ’a Type.t → ’a

Frama-C Plug-in Development Guide CAT RNTL project

4.6 Project Management System 41

The first argument has to be the binding name of the OCaml value registered with
Dynamic.register. The second argument is the type value of this registered value. It is re-
quired for safety reasons. The third argument is the value itself.

Example 4.11 Here is how the previously registered function load of Journal_loader may be
apply to the string "frama_c_journal.ml".

File src/journal_loader/register.ml

let () =
Dynamic.apply

"Journal_loader.load"
(Type.func Type.string Type.unit)
"frama_c_journal.ml"

The given string and the given type value have to be the same than the ones used
when registering the function. Otherwise, the exceptions FunTbl.Not_Registered and
FunTbl.Incompatible_Type are respectively raised. Furthermore, because of the type of
Dynamic.apply and the types of its arguments, the OCaml type checker complains either if the
third argument (here "frama_c_journal.ml") is not of type string or if the returned value (here
()) is not of type unit.

4.6 Project Management System

Prerequisite: knowledge of OCaml module system and labels.

In Frama-C, a key notion detailed in this section is the one of project. Section 4.6.1 first in-
troduces the general principle of project. Then Section 4.6.2 explains how to simply use them.
Section 4.6.3 introduces the so-called internal states for which registration is detailed in Sec-
tions 4.6.4, 4.6.5 and 4.6.6. Section 4.6.4 is dedicated to so-called datatypes. Section 4.6.5 is
dedicated to the internal states themselves. Section 4.6.6 is dedicated to low-level registration.
Finally Section 4.6.7 shows how to handle projects and internal states in a clever and proper
way.

4.6.1 Overview and Key Notions

In Frama-C, many (mostly global) data are attached to an AST. For example, there are the AST
itself, options of the command line (see Section 4.8) and tables containing results of analyses
(Frama-C extensively uses memoisation [9, 10] in order to avoid re-computation of analyses). The
set of all these data is called a project . It is the only value savable on the disk and restorable by
loading.

Several ASTs can exist at the same time in Frama-C and thus several projects as well; there is
one AST per project. Besides each data has one value per AST: thus there are as many values
for each data as projects/ASTs.

The set of all the projects stands for the internal state of Frama-C : it consists of all the ASTs
defined in Frama-C and, for each of them, the corresponding values of all the attached data.

Frama-C Plug-in Development Guide CAT RNTL project

42 Advanced Plug-in Development

A related notion is internal state of a data d. That is the different values of d in projects: for
each data, the cardinal of this set is equal to the cardinal of the internal state of Frama-C (i.e.
the number of existing projects).

These notions are resumed in Figure 4.1. One row contains the value of each data for a specific
project and one line represents an internal state of a specific data.

hhhhhhhhhhhhhhhhhInternal states
Projects Project p1 . . . Project pn

AST a value of a in p1 . . . value of a in pn

data d1 value of d1 in p1 . . . value of d1 in pn

.
data dm value of dm in p1 . . . value of dm in pn

Figure 4.1: Representation of the Frama-C Internal State.

4.6.2 Using Projects

Actually Frama-C maintains a current project (Project.current ()) and a current AST
(Cil_state.file ()) which all operations are automatically performed on. But sometimes
a plug-in developer have to explicitly use them, for example when the AST is modified (usually
through the use of a copy visitor, see Section 4.10) or replaced (e.g. if a new one is loaded from
disk).

An AST must never be modified inside a project. If such an operation is required, you must
create a new project with a new AST, usually by using File.init_project_from_cil_file or
File.init_project_from_visitor.

Operations on projects are grouped together in module Project. A project is typed Project.t.
Function Project.set_current sets the current project on which all operations are implicitly
performed on the new current project.

Example 4.12 Suppose that you saved the current project into file foo.sav in a previous Frama-
C session6 thanks to the following instruction.

Project.save "foo.sav"

In a new Frama-C session, executing the following lines of code (assuming the value analysis has
never been computed previously)

let print_computed () = Format.printf "%b@." (Db.Value.is_computed ()) in
print_computed (); (* false *)
let old = Project.current () in
try
let foo = Project.load ˜name:"foo" "foo.sav" in

. . . /. . .

6A session is one execution of Frama-C (through toplevel.[byte|opt] or viewer.[byte|opt]).

Frama-C Plug-in Development Guide CAT RNTL project

4.6 Project Management System 43

. . . /. . .
Project.set_current foo;
!Db.Value.compute ();
print_computed (); (* true *)
Project.set_current old;
print_computed () (* false *)

with Project.IOError _ →
exit 1

displays

false
true
false

This example shows that the value analysis has been computed only in project foo and not in
project old.

An alternative to the use of Project.set_current is the use of Project.on which applies an
operation on a given project without changing the current project (i.e. locally switch the current
project in order to apply the given operation and, after, restore the initial context).

Example 4.13 The following code is equivalent to the one given in Example 4.12.

let print_computed () = Format.printf "%b@." (Db.Value.is_computed ()) in
print_computed (); (* false *)
try
let foo = Project.load ˜name:"foo" "foo.sav" in
Project.on foo

(fun () → !Db.Value.compute (); print_computed () (* true *)) ();
print_computed () (* false *)

with Project.IOError _ →
exit 1

It displays

false
true
false

4.6.3 Internal State: Principle

If a data should be part of the internal state of Frama-C, you must register it as an internal state
(also called a computation because it is often related to memoisation).

Here we first explain what are the functionalities of each internal state and then we present the
general principle of registration.

Frama-C Plug-in Development Guide CAT RNTL project

44 Advanced Plug-in Development

Internal State Functionalities

Whenever you want to attach a data (e.g. a table containing results of an analysis) to an AST,
you have to register it as an internal state. The main functionalities provide to each internal
state are the following.

• It is automatically updated whenever the current project changes: so your data is always
consistent with the current project.

• It is part of the information saved on disk for restoration in a later session.

• It may be part of a selection which is, roughly speaking, a set of internal states. Which
such a selection, you can control which internal states project operations are applied on
(see Section 4.6.7). For example, it is possible to clear all the internal states which depend
of the value analysis.

• It is possible to ensure inter-analysis consistency by setting internal state dependen-
cies. For example, if the entry point of the analysed program is changed (using
Globals.set_entry_point), all the results of analyses depending of it (like the value
analysis) are automatically reset. If such a reset was not performed, the results of the
value analysis would be not consistent with the current entry point.

Example 4.14 Suppose that the value analysis has previously been computed.

Format.printf "%b@." (!Db.Value.is_computed ()); (* true *)
Globals.set_entry_points "f" true;
Format.printf "%b@." (!Db.Value.is_computed ()); (* false *)

As the value analysis has been reset by setting the entry point, the above code outputs

true
false

Internal State Registration: Overview

For registering a new internal state, functor Project.Computation.Register is provided. Actu-
ally it is quite a low-level functor. Higher-level functors are provided to the developer by modules
Computation and Kernel_computation that register internal states in a simpler way. They in-
ternally apply the low-level functor in a proper way. Module Computation provides internal state
builders for standard OCaml datastructures like hashtables whereas Kernel_computation does
the same for standard Frama-C datastructures (like hashtables indexed by AST statements)7.

Registering a new internal state must be performed before the last initialisation step which is
the run of each function registered through argument toplevel_init of Options.add_plugin
(see Section 4.7).

Section 4.6.5 details how to register a new computation.
7These datastructures are only mutable datastructures (like hashtables, arrays and references) because global

states are always mutable.

Frama-C Plug-in Development Guide CAT RNTL project

4.6 Project Management System 45

The registration of a data of type τ requires to register the type τ itself as a datatype using
functor Project.Datatype.Register. A datatype is a type that is aware of projects. Similarly
to computations, module Datatype (resp. Kernel_datatype) provides pre-defined datatypes and
datatypes-builder for elaborated types8. Section 4.6.4 details how to register a new datatype.

Example 4.15 If you have to register a reference to a boolean initialized to false as an internal
state, you have to write the following code.

module My_Bool_Ref =
Computation.Ref

(struct include Datatype.Bool let default = false end)
(struct let dependencies = [] let name = "My_Bool_Ref" end)

4.6.4 Registering a New Datatype

In order to register a new datatype, you have to apply functor Project.Datatype.Register
which is a quite low-level functor. In most cases, a direct application of this functor is actually
not required because some higher-level and easier-to-use functor does it for you. We explain here
the three different possible situations.

Simple registration If the datatype to register is not hash-consed9 or does not contain hash-
consed ones (i.e. it is not itself hash-consed or composed of Cil_types.fundec, or any Frama-C
abstract interpretation type), the easiest way of registering a new datatype d is to apply one
of functors Persistent or Imperative of module Project.Datatype, depending on the nature
of d (whether it is persistent). The only difference between both functors is that you have to
provide a copy function for imperative (i.e. mutable) datatypes. This copy function is only used
by Project.copy.

Example 4.16 For registering a type t containing an immutable field a, just do

type a = { a : int }
Project.Datatype.Persistent(struct type t = a let name = "a" end)

If the field a is mutable, just write

type a = { mutable a : int }
Project.Datatype.Imperative

(struct
type t = a
let copy x = { a = x.a }
let name = "a"

end)

8On the contrary to computations, these types are either mutable or persistent because the registration of a
type may require the registration of its subtypes (in the sense of syntactically contained in).

9Hash-consing is a programming technique saving memory blocks and speeds up operations on datastructures
when sharing is maximal [5, 8, 3, 4].

Frama-C Plug-in Development Guide CAT RNTL project

46 Advanced Plug-in Development

Using predefined datatypes or datatype builders For most useful types, the corre-
sponding datatypes are already provided in modules Datatype (e.g. Datatype.Int for type
int) and Kernel_datatype (e.g. Kernel_datatype.Stmt for type Cil_types.stmt). More-
over both modules provides a bunch of functors which help to build complex datatypes when
Project.Datatype.Persistent and Project.Datatype.Imperative cannot be used. Interfaces
of modules Datatype and Kernel_datatype provided all the available modules.

Example 4.17 For registering the type of an hashtable associating varinfo to list of kernel func-
tions, it is not possible to apply functor Project.Datatype.Imperative because a kernel function
is composed of Cil_types.fundec. But it is still easy to perform the registration thanks to pre-
defined functors:

Kernel_datatype.VarinfoHashtbl(Datatype.List(Kernel_datatype.KernelFunction))

Direct use of the low-level functor In some cases (e.g. registering a new variant type
composed of a kernel function), applying functor Project.Datatype.Register is required. As
input, one has to provide:

• The type itself.

• How to copy and to rehash it (usually just rebuild the structure by applying the right copy
and rehash functions on subterms).

• A name for the datatype.

Example 4.18 The type of postdominators is the following variant.

type postdominator = Value of Cilutil.StmtSet.t | Top

The corresponding registed datatype used to store results of the postdominator computation is the
following (see file src/postdominators/compute.ml).

Project.Datatype.Register
(struct

type t = postdominator
let map f = function

| Top → Top
| Value set → Value (f set)

let copy = map Kernel_datatype.StmtSet.copy
let rehash = map Kernel_datatype.StmtSet.rehash
let name = "postdominator"

end)

Frama-C Plug-in Development Guide CAT RNTL project

4.6 Project Management System 47

4.6.5 Registering a New Internal State

Here we explain how to register and use an internal state in Frama-C. Registration through the
use of low-level functor Project.Computation.Register is postponed in Section 4.6.6 because
it is more tricky and rarely useful.

In most non-Frama-C applications, a state is a (usually global) mutable value. One can use it in
order to store results of the analysis. For example, inside Frama-C, the following piece of code
would use value state in order to memoise some information attached to statements.

open Cilutil
type info = Kernel_function.t × Cil_types.varinfo
let state : info StmtHashtbl.t = StmtHashtbl.create 97
let compute_info = · · ·
let memoise s =
try StmtHashtbl.find state s
with Not_found → StmtHashtbl.add state s (compute_info s)

let run () = ... !Db.Value.compute (); ... memoise some_stmt ...

However, if one puts this code inside Frama-C, it does not work because this state is not registered
as a Frama-C internal state. A direct consequence is that it is not saved on the disk. For this
purpose, one has to transform the above code into the following one.

module State =
Kernel_computation.StmtHashtbl

(Datatype.Couple(Kernel_datatype.KernelFunction)(Kernel_datatype.Varinfo))
(struct
let size = 97
let name = "state"
let dependencies = [Db.Value.self]
end)

let compute_info = · · ·
let memoise = State.memo compute_info
let run () = ... !Db.Value.compute (); ... memoise some_stmt ...

A quick look on this code shows that the declaration of the state itself is much more complicated
(it uses a functor application) but the use of state is simpler. Actually what has changed?

1. To declare a new internal state, apply one of the predefined functors in modules
Computation or Kernel_computation (see interfaces of these modules for the list of avail-
able modules). Here we use StmtHashtbl which provides an hashtable indexed by state-
ments. The type of values associated to statements is a couple of Kernel_function.t
and Cil_types.varinfo. The first argument of the functor is the datatype correspond-
ing to this type (see Section 4.6.4). The second argument provides some additional
information: the initial size of the hashtable (an integer similar to the argument of
Hashtbl.create), a name for the resulting state and its dependencies. This list of de-
pendencies is built upon values self which are provided by the application of the low-level
functor Project.Computation.Register. This value is called the kind of the internal state

Frama-C Plug-in Development Guide CAT RNTL project

48 Advanced Plug-in Development

(also called state kind and can be used for this purpose. Roughly speaking, it represents
the internal state itself.

2. From outside, a state actually hides its internal representation in order to ensure some
invariants: operations on states implementing hashtable does not take an hashtable in ar-
gument because they implicitly use the hidden hashtable. In our example, a predefined
memo function is used in order to memoise the computation of compute_info. This mem-
oisation function implicitly operates on the hashtable hidden in the internal representation
of State.

Postponed dependencies A plug-in p may want to export its state kind (in the previous
example, that is value State.self). This exportation offers the possibility to other plug-ins to
depend on this state. It is a bit tricky because the state kind has to be accessible through Db.

There is two ways to achieve such a goal. First, the internal state has to be compiled before Db:
usually the internal state has to be somewhere in directory p_types (see Section 4.5.1). Actually
it is quite difficult because the computation of the internal state may be complex and so should
not be in p_types.

The second way is to put a delayed reference to self (i.e. the state kind) in Db thanks to
Project.Computation.dummy which provides a dummy kind. This reference is going to be ini-
tialised at the plug-in initialisation time (see Section 4.7). Now if another plug-in has an internal
state which depends on !Db.My_plugin.self, it cannot put the dependence when the functor
creating the state is applied because the order of plug-in initialisation is not specified (see Sec-
tion 4.7 for more details about initialisation steps). So you have to postpone the addition of this
dependency; usually by using function Options.register_plugin_init (see Section 4.8).

Example 4.19 Plug-in from postpones its internal state in the following way.

File src/kernel/db.mli

module From = struct
· · ·
val self: Project.Computation.t ref

end

File src/kernel/db.ml
module From = struct
· · ·
val self = ref Project.Computation.dummy (* postponed *)

end

File src/from/register.ml
module Functionwise_Dependencies =

Kernel_function.Make_Table
(Function_Froms.Datatype)
(struct

let name = "functionwise_from"
let size = 97

. . . /. . .

Frama-C Plug-in Development Guide CAT RNTL project

4.6 Project Management System 49

. . . /. . .
let dependencies = [Value.self]

end)
let () = Db.From.self := Functionwise_Dependencies.self

(* performed at module initialisation runtime. *)

Plug-in pdg uses from for computing its own internal state. So it declares this dependency as
follow.

File src/pdg/register.ml

module Tbl =
Kernel_function.Make_Table

(PdgTypes.Pdg.Datatype)
(struct

let name = "Pdg.State"
let dependencies = [] (* postponed *)
let size = 97

end)
let () =

Options.register_plugin_init
(fun () → Project.Computation.add_dependency Tbl.self !Db.From.self)

For dynamic plug-ins, it is possible to register state kinds in the same way that any other value
through Dynamic.register (see Section 4.5.2).

4.6.6 Direct Use of Low-level Functor Project.Computation.Register

Functor Project.Computation.Register is the only functor which really registers an internal
state. All the others internally use it. In some cases (e.g. if you define your own mutable record
used as a state), you have to use it. Actually, in the Frama-C kernel, there is no direct use of this
functor.

This functor takes three arguments. The first and the third ones respectively correspond to the
datatype and to information (name and dependencies) of the internal states: they are similar to
the corresponding arguments of the high-level functors (see Section 4.6.5).

The second argument explains how to handle the local version of the value of the internal state
(under registration). Indeed here is the key point: from the outside, only this local version
is used for efficiency purpose. It would work if projects do not exist. Each project knows a
global version: the set of these global versions is the so-called internal states. The project
management system automatically switches the local version when the current project changes
in order to conserve a physical equality between local version and current global version. So,
for this purpose, the second argument provides a type t (type of values of the state) and four
functions create (creation of a new fresh state), clear (cleaning a state), get (getting a state)
and set (setting a state).

Frama-C Plug-in Development Guide CAT RNTL project

50 Advanced Plug-in Development

The following invariants must hold:10

create () returns a fresh value (4.1)
∀p of type t, create () = (clear p; set p; get ()) (4.2)

∀p of type t, copy p returns a fresh value (4.3)
∀p1, p2 of type tsuch that p1 != p2, (set p1; get ()) != p2 (4.4)

Invariant 4.1 ensures that there is no sharing with any fresh value of a same internal state:
so each new project has got its own fresh internal state. Invariant 4.2 ensures that cleaning a
state resets it to its initial value. Invariant 4.3 ensures that there is no sharing with any copy.
Invariant 4.4 is a local independence criteria which ensures that modifying a local version does
not affect any other version (different of the global current one) by side-effect.

Example 4.20 To illustrate this, we show how functor Computation.Ref (registering a state
corresponding to a reference) is implemented.

module Ref(Data:REF_INPUT)(Info:Signature.NAME_DPDS) = struct
type data = Data.t
let create () = ref Data.default
let state = ref (create ())

Here we use an additional reference: our local version is a reference on the right state. We can
use it in order to safely and easily implement get and set required by the registration.

include Project.Computation.Register
(Datatype.Ref(Data))
(struct
type t = data ref (* we register a reference on the given type *)
let create = create
let clear tbl = tbl := Data.default
let get () = !state
let set x = state := x

end)
(Info)

For users of this module, we export “standard” operations which hide the local indirection required
by the project management system.

let set v = !state := v
let get () = !(!state)
let clear () = !state := Data.default

end

10As usual in OCaml, = stands for structural equality while == (resp. !=) stands for physical equality (resp.
disequality).

Frama-C Plug-in Development Guide CAT RNTL project

4.6 Project Management System 51

As you can see, the above implementation is error prone; in particular it uses a double indirection
(reference of reference). So be happy that higher-level functors like Computation.Ref are provided
which hide you such implementations.

4.6.7 Selections

Most operations working on a single project (e.g. Project.clear or Project.on) have two
optional parameters only and except of type Project.Selection.t. These parameters allow
to specify which internal states the operation applies on:

• If only is specified, the operation is only applied on the selected internal states.

• If except is specified, the operation is applied on all internal states, except the selected
ones.

• If both only and except are specified, the operation only applied on the only internal
states, except the except ones.

A selection is roughly speaking a set of internal states. Moreover it handles states dependencies
(that is the specificity of selections).

Example 4.21 The following statement clears all the results of the value analysis and all its
dependencies in the current project.

Project.clear
˜only:(Project.Selection.singleton Db.Value.self Kind.Select_Dependencies)
()

The argument Kind.Select_Dependencies says that we also want to clear all the states which
depend on the value analysis.

Use selections carefully: if you apply a function f on a selection s and if f handles a state which
does not belong to s, then the Frama-C state becomes lost and inconsistent.

Example 4.22 The following statement applies a function f in the project p (which is not the
current one). For efficiency purpose, we restrict the considered states to the command line options
(see Section 4.8).

Project.on ˜only:(Cmdline.get_selection ()) p f ()

This statement only works if f gets only values of the command line options. If it tries to get
the value of another state, the result is unspecified and all actions using any state of the current
project and of project p also become unspecified.

Frama-C Plug-in Development Guide CAT RNTL project

52 Advanced Plug-in Development

4.7 Initialisation Steps

Prerequisite: knowledge of linking of OCaml files and OCaml labels.

In a standard way, Frama-C modules are initialised in the link order which remains mostly
unspecified, so you have to use side-effects at module initialisation time carefully.

As side effects are sometimes useful, Frama-C provides some ways to put it at different initial-
isation times. For this purpose, function Options.register_plugin_init allows to register a
function executed before parsing the Frama-C command line (see Section 4.6.5) while function
Options.add_plugin has three optional arguments plugin_init, init and toplevel_init us-
able in order to control Frama-C initialisation (see Section 4.8). Actually, the whole Frama-C
initialisation process is enclosed in module Boot (the last linked module) which is the main entry
point of Frama-C.

In order to clear what is done when Frama-C is booting, we better specify the Frama-C initiali-
sation order below.

1. Running each Frama-C compilation unit in a mostly unspecified order. The only assumption
is that the link order respects the below partial order:

(a) external libraries

(b) project files (in src/project)

(c) cil files (in cil/src and sub-directories)

(d) kernel files

(e) non-gui plug-in files

(f) gui non plug-in files (in src/gui)11

(g) gui plug-in files11

(h) src/kernel/boot.ml;

2. Running each function registered through Options.register_plugin_init (in an unspec-
ified order). Usually these functions initialise postponed internal-state dependencies (see
Section 4.6.5).

3. Running each function registered through argument plugin_init of Options.add_plugin
(in an unspecified order). Usually these functions are used for plug-in initialisations.

4. Parsing the Frama-C command line.

5. Running each function registered through argument init of Options.add_plugin (in an
unspecified order). Usually these functions are used for initialisations depending on com-
mand line options.

6. Initialising a bunch of Cil attributes.

7. Running each function registered through argument toplevel_init of
Options.add_plugin. Usually these functions are used in order to launch the right
Frama-C entry point (e.g. usually defined in Main for a non-graphical Frama-C applica-
tion).

11If the graphical user interface is compiled.

Frama-C Plug-in Development Guide CAT RNTL project

4.8 Command Line Options 53

4.8 Command Line Options

Prerequisite: knowledge of the OCaml module system and OCaml labels.

Values associated with command line options are stored in module Cmdline while command line
options themselves are registered through module Options. Section 4.8.1 and 4.8.2 introduces
how to store new option values for static and dynamic plug-ins, respectively. Finally, Section 4.8.3
presents how to register new options.

4.8.1 Storing New Static Option Values

In Frama-C, an option value is actually a structure implementing signature Cmdline.S in order
to handle projects: each option value is indeed an internal state (see Section 4.6.5). This struc-
ture should be stored in module Cmdline. Actually a bunch of signatures extended Cmdline.S
are provided in order to deal with the usual option types. For example, there are signatures
Cmdline.INT and Cmdline.BOOL for integer and boolean options. Mostly, these signatures pro-
vide getters and setters for options.

Implementing such an interface is very easy thanks to internal functors provided in module
Cmdline. Indeed, you have just to choose the right functor according to your option type and
eventually the wished default value. Below is a list of most useful functors (see the body of
Cmdline for the complete list).

1. False (resp. True) builds a boolean option initialised to false (resp. true).

2. Int (resp. Zero) builds an integer option initialised to a specified value (resp. to 0).

3. String (resp. EmptyString) builds a string option initialised to a specified value (resp. to
the empty string "").

4. IndexedVal builds an option for any datatype τ as soon as you provides a partial function
from strings to value of type τ .

Each functor takes (at least) a name as argument which corresponds to the name of the internal
states for this option (see Section 4.6.5).

Example 4.23 Value for option -slevel is the module SemanticUnrollingLevel of Cmdline
and is implemented as follow.

module SemanticUnrollingLevel =
Zero(struct let name = "Cmdline.SemanticUnrollingLevel" end)

So it is an integer option initialised by default to 0. Interface for this module is simply

module SemanticUnrollingLevel: INT

Value for option -general-font (viewer only) is the module GeneralFontName and is imple-
mented as follow.

Frama-C Plug-in Development Guide CAT RNTL project

54 Advanced Plug-in Development

module GeneralFontName =
String

(struct
let default = "Helvetica 10"
let name = "Cmdline.GeneralFontName"

end)

So it is a string option initialised by default to Helvetica 10. Interface for this module is simply

module GeneralFontName: STRING

Recommendation 4.3 Options of a same plug-in plugin should belong to a same module
PluginOptions inside Cmdline.

4.8.2 Storing New Dynamic Option Values

Target readers: dynamic plug-in developpers.

As a dynamic plug-in is not allowed to modify the Frama-C kernel, it cannot register its own
options in module Cmdline.

In order to solve this issue, options of a dynamic plug-in have to be stored in the plug-in itself.
For this purpose, module Cmdline provides a dedicated sub-module Cmdline.Dynamic.Register.
This sub-module defines a subset of the bunch of functors than the internal functors
of Cmdline (see Section 4.8.1 for details about these functors). These modules share
the same signature than their internal counterparts. For instance, there are mod-
ules Cmdline.Dynamic.Register.False and Cmdline.Dynamic.Register.Zero which respec-
tively correspond to the internal modules False and Zero of Cmdline. Both modules
Cmdline.Dynamic.Register.False and Cmdline.False share the same signature Cmdline.BOOL
while both modules Cmdline.Dynamic.Register.Zero and Cmdline.Zero share the same signa-
ture Cmdline.INT.

Example 4.24 Value for the option -load-journal is the module LoadFile defined inside the
dynamic plug-in Journal_loader as follows.

File src/journal_loader/register.ml

module LoadFile = Cmdline.Dynamic.Register.EmptyString
(struct let name = "Journal_loader.load" end)

Inside the plug-in which defines a dynamic option, you can use this option like any other. But,
although the module defining the option is not visible from the outside of its plug-in, the option
is accessible by any other plug-ins (and even by the Frama-C kernel as well) through module
Cmdline.Dynamic.Apply. Functions of sub-modules of module Cmdline.Dynamic.Apply takes

Frama-C Plug-in Development Guide CAT RNTL project

4.8 Command Line Options 55

a string in argument which is the name associated with the wished option. For instance, that
is the string "Journal_loader.load" for the value corresponding to the option -load-journal
(see previous example).

Example 4.25 Here we shows how module Options accesses to the option stored in the module
LoadFile, dynamically registered in the previous example, in order to load a Frama-C journal if
required. For clarity, error handling is not shown in this example.

File src/toplevel/options.ml

· · ·
let option_name = "Journal_loader.load" in

(* option_name is exactly the same name used to register the option. *)
(* If the option is set *)
if Cmdline.Dynamic.Apply.String.is_set option_name then

(* Get the name stored in the option *)
let filename = Cmdline.Dynamic.Apply.String.get option_name in
(* Load the journal corresponding to this file name.
This action is done by a dynamically−registered function.
See Section 4.5.2. *)

Dynamic.apply
"Journal_loader.load"

(Type.func Type.string Type.unit)
filename

· · ·

4.8.3 Registering New Options

You have to use function Options.add_plugin for registering all options of a plug-in. For
example, this function automatically displays help messages on the command line in the
Frama-C standard form. Moreover it takes optional arguments which allow to customize
the plug-in initialisation process (see Section 4.7). See documentation attached to it in file
src/toplevel/options.mli for more details.

Usually function Options.add_plugin is called at module initialisation time: so options are
registered when the Frama-C command line is parsed (see Section 4.7).

Example 4.26 For illustrating the use of this function, we show how two plug-ins use it. First
consider plug-in users (see file src/users/users_register.ml).

let call_for_users = · · ·
let init () =

if Cmdline.ForceUsers.get () then
Db.Value.Call_Value_Callbacks.extend call_for_users

let () =
Options.add_plugin

. . . /. . .

Frama-C Plug-in Development Guide CAT RNTL project

56 Advanced Plug-in Development

. . . /. . .
˜name:"users" ˜descr:"users of functions" ˜init
["−users", Arg.Unit Cmdline.ForceUsers.on,

": compute users (through value analysis)";]

The call to Options.add_plugin adds a single option -users which sets the value
Cmdline.ForceUsers when it is set. Arguments name and descr are used by option –help
of Frama-C. Argument init is performed right after the parsing of the command line (see Sec-
tion 4.7) and here extends the value analysis in order to execute the users analysis when this is
required by the user.

The second example is plug-in pdg (see file src/pdg/register.ml).

let () =
Options.add_plugin ˜name:"Program Dependence Graph (experimental)"

˜descr:""
˜shortname: "pdg"
˜debug:[

"−verbose", Arg.Unit Cmdline.Pdg.Verbosity.incr,
": increase verbosity level for the pdg plug−in (can be repeated).";

"−pdg",
Arg.Unit Cmdline.Pdg.BuildAll.on,
": build the dependence graph of each function for the slicing tool";

"−fct−pdg",
Arg.String Cmdline.Pdg.BuildFct.add,
"f : build the dependence graph for the specified function f";

"−dot−pdg",
Arg.String Cmdline.Pdg.DotBasename.set,
"basename : put the PDG of function f in basename.f.dot";

"−dot−postdom",
Arg.String Cmdline.Pdg.DotPostdomBasename.set,
"basename : put the postdominators of function f in basename.f.dot";

]
[]

This code adds some debugging options for plug-in pdg. This option are usable right after
-pdg-debug option which is specified thanks to argument shortname. Actually there is no true
option for this plug-in: all options are debugging ones.

4.9 Locations

Prerequisite: Nothing special (apart of core OCaml programming).

In Frama-C, different representations of C locations exist. Section 4.9.1 presents them. Moreover,
maps indexed by locations are also provided. Section 4.9.2 introduces them.

Frama-C Plug-in Development Guide CAT RNTL project

4.10 Visitors 57

4.9.1 Representations

There are four different representations of C locations. Actually only three are really relevant. All
of them are defined in module Locations. They are introduced below. See the documentation
of src/memory_state/locations.mli for details about the provided operations on these types.

• Type Location_Bytes.t is used to represent values of C expressions like 2 or ((int) &a)
+ 13. With this representation, there is no way to know the size of a value while it is still
possible to join two values. Roughly speaking it is represented by a mapping between C
variable and offsets in bytes.

• Type location is used to represent the right part of a C affectation (including bitfields).
It is represented by a Location_Bits.t (see below) attached to a size. It is possible to
join two locations if and only if they have the same sizes.

• Type Location_Bits.t is similar to location_Byte.t with offsets in bits instead of bytes.
Actually it should only be used inside a location.

• Type Zone.t is a set of bits (without any specific order). It is possible to join two zones
even if they have different sizes.

Recommendation 4.4 Roughly speaking, locations and zones have the same purpose. You
should use locations as soon as you have no need to join locations of different sizes. If you
require to convert locations to zones, use function Locations.valid_enumerate_bits.

As join operators are provided for these types, they can be easily used in abstract interpretation
analyses (which can themselves be implemented thanks to one of functors of module Dataflow,
see Section 5.1.1).

4.9.2 Map Indexed by Locations

Modules Lmap and Lmap_bitwise provide functors implementing maps indexed by locations and
zones (respectively). The argument of these functors have to implement values attached to
indices (locations or zones).

These implementations are quite more complex than simple maps because they automati-
cally handle overlaps of locations (or zones). So such implementations actually require that
structures implementing values attached to indices are lattices (i.e. implement signature
Abstract_interp.Lattice). For this purpose, functors of the abstract interpretation toolbox
can help (see in particular module Abstract_interp).

4.10 Visitors

Prerequisite: knowledge of OCaml object programming.

Cil offers a visitor, Cil.cilVisitor that allows to traverse (parts of) an AST. It is a class
with one method per type of the AST, whose default behavior is simply to call the method
corresponding to its children. This is a convenient way to perform local transformations over a
whole Cil_types.file by inheriting from it and redefining a few methods. However, the original
Cil visitor is of course not aware of the internal state of Frama-C itself. Hence, there exists another

Frama-C Plug-in Development Guide CAT RNTL project

58 Advanced Plug-in Development

visitor, Visitor.generic_frama_c_visitor, which handles projects in a transparent way for the
user. There are very few cases where the plain Cil visitor should be used.

Basically, as soon as the initial project has been built from the C source files (i.e. one of the
functions File.init_∗ has been applied), only the Frama-C visitor should occur.

There are a few differences between the two (the Frama-C visitor inherits from the Cil one). These
differences are summarized in Section 4.10.6, which the reader already familiar with Cil is invited
to read carefully.

4.10.1 Entry Points

Cil offers various entry points for the visitor. They are functions called Cil.visitCilAstType
where astType is a node type in the Cil’s AST. Such a function takes as argument an instance of a
cilVisitor and an astType and gives back an astType transformed according to the visitor. The
entry points for visiting a whole Cil_types.file (Cil.visitCilFileCopy, Cil.visitCilFile
and visitCilFileSameGlobals) are slightly different and do not support all kinds of visitors.
See the documentation attached to them in cil.mli for more details.

4.10.2 Methods

As said above, there is a method for each type in the Cil AST (including for logic an-
notation). For a given type astType, the method is called vastType12, and has type
astType→astType’ visitAction, where astType’ is either astType or astType list (for instance,
one can transform a global into several ones). visitAction describes what should be done for
the children of the resulting AST node, and is presented in the next section. In addition, there
are two modes for visiting a varinfo: vvdec to visit its declaration, and vvrbl to visit its uses.
More detailed information can be found in cil.mli.

For the Frama-C visitor, three methods, vstmt, vfile, and vglob take care of maintaining the
coherence between the transformed AST and the internal state of Frama-C . Thus they must not
be redefined. One should redefine vstmt_aux and vglob_aux instead.

4.10.3 Action Performed

The return value of visiting methods indicates what should be done next. There are four possi-
bilities:

• SkipChildren the visitor do not visit the children;

• ChangeTo v the old node is replaced by v and the visit stops;

• DoChildren the visit goes on with the children; this is the default behavior;

• DoChildrenPost(v,f) the old node is replaced by v, the visit goes on with the children of
v, and when it is finished, f is applied to the result.

• ChangeToPost(v,f) the old is replaced by v, and f is applied to the result. This is however
not exactly the same thing as returning ChangeTo(f(v)). Namely, in the case of vstmt_aux

12This naming convention is not strictly enforced. For instance the method corresponding to offset is voffs.

Frama-C Plug-in Development Guide CAT RNTL project

4.10 Visitors 59

and vglob_aux, f will be applied to v only after the operations needed to maintain the
consistency of Frama-C’s internal state with respect to the AST have been performed.

4.10.4 Visitors and Projects

The visitors takes an additional argument, which is the project in which the transformed AST
should be put in. Note that an in-place visitor (see next section) should operate on the current
project (otherwise, two projects would share the same AST). If this is not the case, it is up to
the developer to ensure that the copy is done by other means, so that there is no sharing.

Note that the tables of the new project are not filled immediately. Instead, actions are queued,
and performed when a whole Cil_types.file has been visited. One can access the queue with
the get_filling_actions method, and perform the associated actions on the new project with
the fill_global_tables method.

4.10.5 In-place and Copy Visitors

The visitors take as argument a visitor_behavior, which comes in two flavors: inplace_visit
and copy_visit. In the in-place mode, nodes are visited in place, while in the copy mode, nodes
are copied and the visit is done on the copy. For the nodes shared across the AST (varinfo,
compinfo, enuminfo, typeinfo, stmt, logic_info, predicate_info and fieldinfo), sharing is
of course preserved, and the mapping between the old nodes and their copy can be manipulated
explicitly through the following functions:

• reset_behavior_name resets the mapping corresponding to the type name.

• get_original_name gets the original value corresponding to a copy (and behaves as the
identity if the given value is not known).

• get_name gets the copy corresponding to an old value. If the given value is not known, it
behaves as the identity.

• set_name sets a copy for a given value. Be sure to use it before any occurrence of the old
value has been copied, or sharing will be lost.

get_original_name functions allow to retrieve additional information tied to the original AST
nodes. Its result must not be modified in place (this would defeat the purpose of operating on
a copy to leave the original AST untouched). Moreover, note that whenever the index used
for name is modified in the copy, the internal state of the visitor behavior must be updated
accordingly (via the set_name function) for get_original_name to give correct results.

The list of such indices is given Figure 4.2.

Last, when using a copy visitor, the actions (see previous section) SkipChildren and ChangeTo
must be used with care, i.e one has to ensure that the children are fresh. Otherwise, the new
AST will share some nodes with the old one. Even worse, in such a situation the new AST might
very well be left in an inconsistent state, with uses of shared node (e.g. a varinfo for a function
f in a function call) which do not match the corresponding declaration (e.g the GFun definition
of f).

Frama-C Plug-in Development Guide CAT RNTL project

60 Advanced Plug-in Development

Type Index
varinfo vid
compinfo ckey
enuminfo ename
typeinfo tname
stmt sid
logic_info l_name
predicate_info p_name
logic_var lv_id
fieldinfo fname and fcomp.ckey

Figure 4.2: Indices of AST nodes.

4.10.6 Differences Between the Cil and Frama-C Visitors

As said in Section 4.10.2, vstmt and vglob should not be redefined. Use vstmt_aux and
vglob_aux instead. Be aware that the entries corresponding to statements and globals in Frama-
C tables are considered more or less as children of the node. In particular, if the method returns
ChangeTo action (see Section 4.10.3), it is assumed that it has taken care of updating the tables
accordingly, which can be a little tricky when copying a file from a project to another one.
Prefer ChangeDoChildrenPost. On the other hand, a SkipChildren action implies that the
visit will stop, but the information associated to the old value will be associated to the new one.
If the children are to be visited, it is undefined whether the table entries are visited before or
after the children in the AST.

4.10.7 Example

Here is a small copy visitor that adds an assertion for each division in the program, stating that
the divisor is not zero:

open Cil_types
open Cil

class non_zero_divisor prj = object(self)
inherit Visitor.generic_frama_c_visitor (Cil.copy_visit()) prj

(* A division is an expression: we override the vexpr method *)
method vexpr = function

BinOp((Div|Mod),_,e2,_) →
let t = Cil.typeOf e2 in
let logic_e2 =

Logic_const.mk_dummy_term
(TCastE(t,Logic_const.expr_to_term e2)) t

in
let assertion = Logic_const.prel (Rneq,logic_e2,Cil.lzero()) in
(* At this point, we have built the assertion we want to insert.

It remains to attach it to the correct statement. The cil visitor
maintains the information of which statement is currently visited

. . . /. . .

Frama-C Plug-in Development Guide CAT RNTL project

4.11 GUI Extension 61

. . . /. . .
in the current_stmt method, which returns None when outside
of a statement, e.g. when visiting a global declaration. Here, it
necessarily returns Some. *)
let stmt = Extlib.the (self#current_stmt) in
(* Since we are copying the file in a new project, we can’t insert

the annotation into the current table, but in the table of the new
project. To avoid the cost of switching projects back and forth,
all operations on the new project are queued until the end of the
visit, as mentioned above. This is done in the following
statement. *)

Queue.add
(fun () → Annotations.add_assert stmt ˜before:true assertion)
self#get_filling_actions;

(* Do not forget to recurse on the children of the
division. *)
DoChildren

| _ → DoChildren (* do not do anything on other expressions
(except visiting their children)*)

end

(* This function returns a new project initialized with the current file plus
the annotations related to division. *)

let create_syntactic_check_project =
let prj = Project.create "syntactic check" in
File.init_project_from_visitor prj (new Syntactic_check.non_zero_divisor);
prj

4.11 GUI Extension

Prerequisite: knowledge of Lablgtk2.

Each plug-in can extend the Frama-C graphical user interface (aka gui) in order to sup-
port its own functionalities in the Frama-C viewer. For this purpose, a plug-in developer
has to register a function of type Design.main_window_extension_points -> unit thanks to
Design.register_extension. Design.main_window_extension_points is a class type properly
documented providing access to the main widgets of a Frama-C gui.

Such a code has to be put in separate files into the plug-in directory. Moreover, in Makefile.in,
variable PLUGIN_GUI_CMO has to be set in order to compile the gui plug-in code (see Section 5.3.2).

Besides computations taking time have to call time to time function !Db.progress in order to
keep the gui reactive.

Mainly that’s all! The gui implementation uses Lablgtk2 [7]: so you can use any Lablgtk2-
compatible code in your gui extension. A complete exemple of gui extension may be found in
plug-in Occurrence (see file src/occurrence/register_gui.ml).

Frama-C Plug-in Development Guide CAT RNTL project

62 Advanced Plug-in Development

Potential problems All the gui plug-in extensions share the same window and same widgets.
So conflicts can occur, especially if you specify some attributes on a predefined object. For
example, if a plug-in wants to highlight a statement s in yellow and another one wants to
highlight s in red at the same time, the behaviour is not specified but it could be quite difficult
to understand for an user.

4.12 Documentation

Prerequisite: knowledge of ocamldoc.

Here we present some hints on the way to document your plug-in. First Section 4.12.1 introduces
a quick general overview about the documentation process. Next Section 4.12.2 focus on the plug-
in source documentation. Finaly Section 4.12.3 explains how to modify the Frama-C website.

4.12.1 General Overview

Command make doc produces the whole Frama-C source documentation in HTML format.
The generated index file is doc/code/html/index.html. A more general purpose index is
doc/index.html (from which the previous index is accessible).

The previous command takes some times. So command make html only generates the kernel
documentation (i.e. Frama-C without any plug-in) while make $(PLUGIN_NAME)_DOC (by substi-
tuting the right value for $(PLUGIN_NAME)) generates the documentation for a single plug-in.

4.12.2 Plug-in Source Documentation

Each plug-in should be properly documented. Frama-C uses ocamldoc and so you can write any
valid ocamldoc comments.

First of all, a plug-in should export itself no function: the only visible plug-in interface should
be in Db.

Recommendation 4.5 To ensure this invariant, the best way is to provide an empty interface
for the plug-in.

The interface name of a plug-in plugin must be Plugin.mli. Be careful to capitalisation of the
filename which is unusual in OCaml but here required for compilation purpose.

Besides, the documentation generator also produces an internal plug-in documentation which
may be useful for the plug-in developer itself. This internal documentation is available via
file doc/code/plugin/index.html for each plug-in plugin. You can add an introduction to this
documentation into a file. This file has to be assigned into variable PLUGIN_INTRO of Makefile.in
(see Section 5.3.2).

In order to ease the access to this internal documentation, you have to manually edit file
doc/index.html in order to add an entry for your plug-in in the plug-in list.

4.12.3 Website

Target readers: developers with a CVS access.

Frama-C Plug-in Development Guide CAT RNTL project

4.13 License Policy 63

The html sources of the Frama-C website belong to directory doc/www/src. Each plug-in available
through the Frama-C website (http://www.frama-c.cea.fr) may have its own webpage.

For each plug-in p, the source of its webpage should be called p.prehtml: this file is preprocessed
by the makefile generating the whole website. The format of this page looks like below.

<#head>
<h1>Impact plug−in</h1>

· · · Plug−in description · · ·
<#foot>

This page should be referenced from the page http://www.frama-c.cea.fr/plugins.html. For
this purpose, you have to edit files plugins.prehtml and index.prehtml.

In order to generate the html pages from directory doc/www/src, just execute

$ make

The generated website is available in directory doc/www/export and the homepage is
doc/www/export/index.html.

The html pages belonging to directory doc/www/src must not be used in order to display the
website because relative links are not the same than those of the real website. Use html pages of
directory doc/www/export instead.

Recommendation 4.6 You can use the address http: // validator. w3. org/ #validate_
by_ upload in order to check the validity of your html code.

If you want to officially put the webpage on the Frama-C website, you have to contact CEA.

4.13 License Policy

Target readers: developers with a CVS access.

Prerequisite: knowledge of make.

If you want to redistribute a plug-in inside Frama-C, you have to define a proper license policy.
For this purpose, some stuffs are provide in Makefile.in. Mainly we distinguish two cases
described below.

• If the wished license is already used inside Frama-C , just extend the variable cor-
responding to the wished license in order to include files of your plug-in. Next run make
headers.

Example 4.27 Plug-in slicing is released under LGPL and is proprietary of both CEA
and INRIA. So, in the makefile, there is the following line.

Frama-C Plug-in Development Guide CAT RNTL project

http://www.frama-c.cea.fr
http://www.frama-c.cea.fr/plugins.html
http://validator.w3.org/#validate_by_upload
http://validator.w3.org/#validate_by_upload

64 Advanced Plug-in Development

CEA_INRIA_LGPL= ... \
src/slicing_types/*.ml* src/slicing/*.ml*

• If the wished license is unknown inside Frama-C , you have to:

1. Add a new variable v corresponding to it and assign files of your plug-in;

2. Extend variable LICENSES with this variable;

3. Add a text file in directory licenses containing your licenses

4. Add a text file in directory headers containing the headers to add into files of your
plug-in (those assigned by v).

The filename must be the same than the variable name v. Moreover this file should
contain a reference to the file containing the whole license text.

5. Run make headers.

Frama-C Plug-in Development Guide CAT RNTL project

Chapter 5

Reference Manual

This chapter is a reference manual for plug-in developers. it provides full details which complete
Chapter 4.

5.1 File Tree

This Section introduces main parts of Frama-C in order to quickly find useful information inside
sources. Our goal is not to introduce the Frama-C software architecture (that is the purpose of
Chapter 3) nor to detail each module (that is the purpose of the source documentation generated
by make doc). Directory containing Cil implementation is detailed in Section 5.1.1 while directory
containing the Frama-C implementation itself is presented in Section 5.1.2.

Figure 5.1 shows directories useful for a plug-in developer. More details are provided below.

Kind Name Specification Reference
. Frama-C root directory

Sources
src Frama-C implementation Section 5.1.2
cil Cil source files Section 5.1.1

external Source of external free libraries

Tests tests Frama-C test suites Section 4.4
ptests ptests implementation

Generated Files bin Binaries
lib Some compiled files

Documentations
doc Documentation directory

headers Headers of source files Section 4.13
licenses Licenses used by plug-ins and kernel Section 4.13

Shared libraries share Shared files

Figure 5.1: Frama-C directories.

• The Frama-C root directory contains the configuration files, makefiles and some information
files (in uppercase).

• Frama-C sources are split in three directories: src (described in Section 5.1.2) contains the
core of the implementation while cil (described in Section 5.1.1) and external respectively

66 Reference Manual

contains the implementation of Cil (extended with ACSL) and external libraries included
in the Frama-C distribution.

• Directory tests contains the Frama-C test suite which is used by tool ptests (see Sec-
tion 4.4).

• Directories bin and lib contains binary files mainly produced by Frama-C compilation.
In particular Frama-C executables belong to directory bin while directory lib/plugins
receives the compiled plug-ins. You should never add yourself any file in these directories.

• Documentations (including plug-in specific, source code and ACSL documentations) are
provided in directory doc. Directories headers and licenses contains files useful for
copyright notification (see Section 4.13).

• Directory share contains useful libraries for Frama-C users such as the Frama-C C library
(e.g. ad-hoc libraries libc and malloc for Frama-C).

5.1.1 Directory cil

The source files of Cil belong to five directories shown Figure 5.2. More details are provided
below.

Name Specification
ocamlutil OCaml useful utilities

src Main Cil files
src/ext Syntactic analysis provided by Cil

src/frontc C frontend
src/logic ACSL frontend

Figure 5.2: Cil directories.

• ocamlutil contains some OCaml utilities useful for a plug-in developer. Most important
modules are Inthash and Cilutil. The first one contains an implementation of hashta-
bles optimized for integer keys while the second one contains some useful functions (e.g.
out_some which extract a value from an option type) and datastructures (e.g. module
StmtHashtbl implements hashtables optimized for statement keys).

• src contains the main files of Cil. Most important modules are Cil_types and Cil. The
first one contains type declarations of the Cil AST while the second one contains very useful
operations over this AST.

• src/ext contains syntactic analysis provided by Cil . For example, module Cfg provides
control flow graph, module Callgraph provides a syntactic callgraph and module Dataflow
provides parameterised forward/backward data flow analysis.

• src/frontc is the C frontend which converts C code to the corresponding Cil AST. It
should not be used by a Frama-C plug-in developer.

• src/logic is the ACSL frontend which converts logic code to the corresponding Cil AST.
The only useful modules for a Frama-C plug-in developer are Logic_const which provides
some predefined logic constructs (terms, predicates, . . .) and Logic_typing which allows
to dynamically extend the logic type system.

Frama-C Plug-in Development Guide CAT RNTL project

5.2 Configure.in 67

5.1.2 Directory src

The source files of Frama-C are split into different sub-directories inside src. Each sub-directory
contains either a plug-in implementation or some parts of the Frama-C kernel.

Each plug-in implementation can be split into two different sub-directories, one for exported type
declarations and related implementations visible from Db (see Chapter 3 and Section 4.5.1) and
one-other for the implementation provided in Db.

Kernel directories are shown Figure 5.3. More details are provided below.

Kind Name Specification Reference

Toolboxes
kernel Kernel toolbox

ai Abstract interpretation toolbox Section 4.9
memory_states Memory-state toolbox Section 4.9

Libraries
project Project library Section 4.6

lib Miscellaneous libraries
misc Additional useful operations

Entry points toplevel Frama-C toplevel Sections 4.7 and 4.8
gui Graphical User Interface Section 4.11

Figure 5.3: Kernel directories.

• Directory kernel contains the kernel toolbox over Cil. Main kernel modules are shown in
Figure 5.4.

• Directories ai and memory_states are the abstract interpretation and memory-state tool-
boxes (see section 4.9). In particular, in ai, module Abstract_interp defines useful
generic lattices and module Ival defines some pre-instantiated arithmetic lattices while,
in memory_states, module Locations provides several representations of C locations and
modules Lmap and Lmap_bitwise provide maps indexed by such locations.

• Directory project is the project library fully described in Section 4.6.

• Directories lib and misc contain datastructures and operations used in Frama-C. In par-
ticular, module Extlib is the Frama-C extension of the OCaml standard library whereas
module Type is the interface for type values (the OCaml values representing OCaml types)
required by dynamic plug-in registrations and uses (see Section 4.5.2).

• Directory toplevel1 contains the Frama-C toplevel. In particular, module Main defines
the main Frama-C entry point (see Section 4.7) and module Options manages the Frama-C
command line (see Section 4.8).

• Directory gui1 contains the gui implementation part common to all plug-ins. See Sec-
tion 4.11 for more details.

5.2 Configure.in

Figure 5.5 presents the different parts of configure.in in the order that they are introduced in
the file. The second row of the tabular says whether the given part has to be modified eventually

1From the outside, gui and toplevel may be seen as plug-ins with some exceptions because it has to be linked
at the end of the link process.

Frama-C Plug-in Development Guide CAT RNTL project

68 Reference Manual

Kind Name Specification Reference

AST Cil_state The Cil AST for Frama-C
Ast_info Useful operations over the Cil AST

Specific
information

File AST initialisers and accesses to C files
Globals Operations on globals

Kernel_function Operations on functions
Annotations Manage annotations at a propram point

Loop Operations on loops

Database

Db Static plug-in database Section 4.5.1
Db_types Type declarations required by Db Section 4.5.1
Dynamic Interface for dynamic plug-ins Section 4.5.2

Kui High-level Frama-C front-end

Base
Modules

Version Information about Frama-C version
Cmdline Command line options Section 4.8
CilE Useful Cil extensions

Alarms Alarm management
Kernel_type Type value for kernel types Section 4.5.2
Stmts_graph Accessibility checks using CFG

Visitor Visitor Frama-C visitors subsuming the Cil ones Section 4.10

Project Kernel_datatype High-level datatype builders Section 4.6.4
Kernel_computation High-level internal state builders Section 4.6.5

ACSL
printers

Ast_printer Pretty-printer for annotations
Printer Class for pretty-printing annotations

Initializer Boot Last linked module Section 4.7

Figure 5.4: Main kernel modules.

Frama-C Plug-in Development Guide CAT RNTL project

5.3 Makefile.in 69

by a plug-in developer. More details are provided below.

Id Name Mod. Reference
1 Configuration of make no
2 Configuration of OCaml no
3 Configuration of other mandatory tools/libraries no
4 Configuration of other non-mandatory tools/libraries no
5 Platform configuration no
6 Wished Frama-C plug-in YES Sections 4.2.2 and 4.2.3
7 Configuration of plug-in tools/libraries YES Section 4.2.5
8 Checking plug-in dependencies YES Section 4.2.4
9 Makefile creation YES Section 4.2.2
10 Summary YES Section 4.2.2

Figure 5.5: Sections of configure.in.

1. Configuration of make checks whether the version of make is correct. Some useful
option is –enable-verbosemake (resp. –disable-verbosemake) which set (resp. unset)
the verbose mode for make. In verbose mode, right make commands are displayed on the
user console: it is useful for debugging the makefile. In non-verbose mode, only command
shortcuts are displayed for user readibility.

2. Configuration of OCaml checks whether the version of OCaml is correct.

3. Configuration of other mandatory tools/libraries checks whether all the external
mandatory tools and libraries required by the Frama-C kernel are present.

4. Configuration of other non-mandatory tools/libraries checks which external non-
mandatory tools and libraries used by the Frama-C kernel are present.

5. Platform Configuration sets the necessary platform characteristics (operating system,
specific features of gcc, etc) for compiling Frama-C.

6. Wished Frama-C Plug-ins sets which Frama-C plug-ins the user wants to compile.

7. Configuration of plug-in tools/libraries checks the availability of external tools and
libraries required by plug-ins for compilation and execution.

8. Checking Plug-in Dependencies sets which plug-ins have to be disable (at least par-
tially) because they depend on others plug-ins which are not available (at least partially).

9. Makefile Creation creates Makefile from Makefile.in including information provided
by this configuration.

10. Summary displays summary of each plug-in availability.

5.3 Makefile.in

In this section, we detail the organization of Makefile.in. First Section 5.3.1 presents the
different sections of this file. Then Section 5.3.2 details variables introduced by Makefile.plugin.

Frama-C Plug-in Development Guide CAT RNTL project

70 Reference Manual

5.3.1 Sections

Figure 5.6 presents the different parts of Makefile.in in the order that they are introduced in
the file. The second row of the tabular says whether the given part has to be modified eventually
by a plug-in developer. More details are provided below.

Id Name Mod. Reference
1 Global variables from configure no
2 Shell commands no
3 Command names no
4 Global plug-in variables no
5 Additional global variables no
6 Main targets no
7 External libraries to compile no
8 Internal miscellaneous libraries no
9 Kernel no
10 Plug-ins YES Section 4.3
11 Frontends no
12 Generic rules no
13 Tests no
14 Emacs tags no
15 Documentation no
16 Distribution YES ???
17 File headers: license policy YES Section 4.13
18 Makefile rebuilting no
19 Cleaning no
20 Depend no
21 ptests no

Figure 5.6: Sections of Makefile.in.

1. Global variables from configure contains variable declarations from variables defined
in configure.in (see Section 4.2). In particular, set variable VERBOSEMAKE to yes in order
to see the right make commands in the user console. The typical use is

$ make VERBOSEMAKE=yes

2. Shell commands defines shortcuts which should be used in the makefile.

3. Command names defines command names displayed on the console in the non-verbose
mode.

4. Global plug-in variables declares some plug-in specific variables used throughout the
makefile.

5. Additional global variables declares some other variables used throughout the make-
file. In particular, it declares UNPACKED_DIRS which should be extended by a plug-in
developer if he uses files which do not belong to the plug-in directory (that is if variable
PLUGIN_TYPES_CMO is set, see Section 5.3.2).

Frama-C Plug-in Development Guide CAT RNTL project

5.3 Makefile.in 71

6. Main targets defines the main rules of the makefile. The most important ones are
top, byte and opt which respectively build the Frama-C interactive, bytecode and native
toplevels.

7. External libraries to compile provides variables and rules for external libraries required
by Frama-C. Each library is in a specific sub-section.

8. Internal miscellaneous libraries provides variables and rules for Frama-C internal li-
braries (Cil and Project), each described in a specific sub-section.

9. Kernel provides variables and rules for the Frama-C kernel. Each part is described in
specific sub-sections.

10. After Section “Kernel”, there are several sections corresponding to plug-ins (see Sec-
tion 5.3.2). This is the part that a plug-in developer has to modify in order to add
compilation directives for its plug-in.

11. After plug-in sections, there are sections corresponding to different Frama-C frontends (in
particular, Sections toplevel, gui and obfuscator).

12. Generic rules contains rules in order to automatically produces different kinds of files
(e.g. .cm[iox] from .ml or .mli for Objective Caml files)

13. Tests provides rules to execute tests (see Section 4.4).

14. Emacs tags provides rules which generate emacs tags (useful for a quick search of OCaml
definitions).

15. Documentation provides rules generating Frama-C source documentation (see Sec-
tion 4.12).

16. Distribution provides rules which install the Frama-C distribution.

17. File headers: license policy provides variables and rules to manage the Frama-C license
policy (see Section 4.13).

18. Makefile rebuilting provides rules in order to automatically rebuild Makefile and
configure when required.

19. Cleaning provides rules in order to remove files generated by makefile rules.

20. Depend provides rules which compute Frama-C source dependencies.

21. Ptests provides rules in order to build ptests (see Section 4.4).

5.3.2 Variables of Makefile.plugin

Figure 5.7 presents all the variables that can be set before including Makefile.plugin (see
Section 4.3). Details are provided below.

• Variable PLUGIN_NAME is the module name of the plug-in.

So it must be capitalised (as each OCaml module name).

Frama-C Plug-in Development Guide CAT RNTL project

72 Reference Manual

Kind Name Specification

Usual
information

PLUGIN_NAME Module name of the plug-in
PLUGIN_DIR Directory containing plug-in source files

PLUGIN_ENABLE Whether the plug-in has to be compiled
PLUGIN_HAS_MLI Whether the plug-in gets an interface

Source files

PLUGIN_CMO .cmo plug-in files
PLUGIN_CMI .cmi plug-in files without corresponding .cmo

PLUGIN_TYPES_CMO .cmo plug-in files not belonging to $(PLUGIN_DIR)
PLUGIN_GUI_CMO .cmo plug-in files not belonging to $(PLUGIN_DIR)

Compilation
flags

PLUGIN_BFLAGS Plug-in specific flags for ocamlc
PLUGIN_OFLAGS Plug-in specific flags for ocamlopt

Dependencies
PLUGIN_DEPFLAGS Plug-in specific flags for ocamldep
PLUGIN_GENERATED Plug-in files to compiled before running ocamldep
PLUGIN_DEPENDS Other plug-ins to compiled before the considered one

Documentation

PLUGIN_DOCFLAGS Plug-in specific flags for ocamldoc
PLUGIN_UNDOC Source files with no provided documentation

PLUGIN_TYPES_TODOC Additional source files to document
PLUGIN_INTRO Text file to append to the plug-in introduction

PLUGIN_HAS_EXT_DOC Whether the plug-in has an external pdf manual

Testing

PLUGIN_NO_TESTS Whether there is no plug-in specific test directory
PLUGIN_TESTS_DIRS Directories containing plug-in tests
PLUGIN_TESTS_LIBS Specific .cmo files used by plug-in tests

PLUGIN_NO_DEFAULT_TEST Whether to include tests in default test suite.

Distribution
PLUGIN_DISTRIBUTED_BIN Whether to include the plug-in in binary distribution

PLUGIN_DISTRIBUTED Whether to include the plug-in in source distribution
PLUGIN_DISTRIB_EXTERNAL Additional files to be included in the distribution

Figure 5.7: Parameters of Makefile.plugin.

Frama-C Plug-in Development Guide CAT RNTL project

5.3 Makefile.in 73

• Variable PLUGIN_DIR is the directory containing plug-in source files. It is usually set to
src/plugin where plugin is the plug-in name.

• Variable PLUGIN_ENABLE must be set to yes if the plug-in has to be compiled. It is usually
set to @plugin_ENABLE@ provided by configure.in where plugin is the plug-in name.

• Variable PLUGIN_HAS_MLI must be set to yes if plug-in plugin gets a file .mli (which must
be capitalised: Plugin.mli, see Section 4.12) describing its API. Note that this API should
be empty in order to enforce the architecture invariant which is that each plug-in is used
through Db (see Chapter 3).

• Variables PLUGIN_CMO and PLUGIN_CMI are respectively .cmo plug-in files and .cmi files
without corresponding .cmo plug-in files. For each of them, do not write their file path nor
their file extension: they are automatically added ($(PLUGIN_DIR)/f.cm[io] for a file f).

• Variable PLUGIN_TYPES_CMO is the .cmo plug-in files which do not belong to $(PLUGIN_DIR).
They usually belong to src/plugin_types where plugin is the plug-in name (see Sec-
tion 4.5.1). Do not write file extension (which is .cmo): it is automatically added.

• Variable PLUGIN_GUI_CMO is the .cmo plug-in files which have to be linked with the GUI
(see Section 4.11). As for variable PLUGIN_CMO, do not write their file path nor their file
extension.

• Variables PLUGIN_BFLAGS, PLUGIN_OFLAGS, PLUGIN_DEPFLAGS and PLUGIN_DOCFLAGS are
plug-in specific flags for respectively ocamlc, ocamlopt, ocamldep and ocamldoc.

• Variable PLUGIN_GENERATED is files which must be generated before computing plug-in
dependencies. In particular, this is where .ml files generated by ocamlyacc and ocamllex
must be placed if needed.

• Variable PLUGIN_DEPENDS is the other plug-ins which must be compiled before the con-
sidered plug-in. Note that, in a normal context, it should not be used because a plug-in
interface should be empty (see Chapter 3).

• Variable PLUGIN_UNDOC is the source files for which no documentation is provided. Do not
write their file path which is automatically set to $(PLUGIN_DIR).

• Variable PLUGIN_TYPES_TODOC is the additional source files to document with the plug-in.
They usually belong to src/plugin_types where plugin is the plug-in name (see Sec-
tion 4.5.1).

• Variable PLUGIN_INTRO is the text file to append to the plug-in documentation introduction.
Usually this file is doc/code/intro_plugin.txt for a plug-in plugin. It can contain any
text understood by ocamldoc.

• Variable PLUGIN_HAS_EXT_DOC is set to yes if the plug-in has its own reference manual. It
is supposed to be a pdf file generated by make in directory doc/$(PLUGIN_NAME)

• Variable PLUGIN_NO_TEST must be set to yes if there is no specific test directory for the
plug-in.

• Variable PLUGIN_TESTS_DIRS is the directories containing plug-in tests. Its default value
is tests/$(notdir $(PLUGIN_DIR))).

• Variable PLUGIN_TESTS_LIB is the .cmo plug-in specific files used by plug-in tests. Do not
write its file path (which is $(PLUGIN_TESTS_DIRS)) nor its file extension (which is .cmo).

Frama-C Plug-in Development Guide CAT RNTL project

74 Reference Manual

• Variable PLUGIN_NO_DEFAULT_TEST indicates whether the test directory of the plug-in
should be considered when running Frama-C default test suite. When set to a non-empty
value, the plug-in tests are run only through make $(PLUGIN_NAME)_tests.

• Variable PLUGIN_DISTRIB_BIN indicates whether the plug-in should be included in a binary
distribution.

• Variable PLUGIN_DISTRIBUTED indicates whether the plug-in should be included in a source
distribution.

• Variable PLUGIN_DISTRIB_EXTERNAL is the list of files that should be included in the source
distribution for this plug-in, outside of the src/$(PLUGIN_NAME) directory (and the test
and documentation directories if any).

As previously said, the above variables is set before including Makefile.plugin in order to
customize its behavior. Nevertheless they must not be use anywhere else in the makefile. In
order to deal with this issue, for each plug-in p, Makefile.plugin provides some variables which
may be used after its inclusion defining p. These variables are listed in Figure 5.8. For each
variable of the form p_VAR, its behavior is exactly equivalent to the value of the parameter
PLUGIN_VAR for the plug-in p2.

Kind Name3

Usual information plugin_DIR

Source files

plugin_CMO
plugin_CMI
plugin_CMX

plugin_TYPES_CMO
plugin_TYPES_CMX

Compilation flags plugin_BFLAGS
plugin_OFLAGS

Dependencies plugin_DEPFLAGS
plugin_GENERATED

Documentation plugin_DOCFLAGS
plugin_TYPES_TODOC

Testing plugin_TESTS_DIRS
plugin_TESTS_LIB

Figure 5.8: Variables defined by Makefile.plugin.

5.4 Testing

Section 4.4 explains how to test a plug-in. Here Figure 5.9 details the options of ptests while
Figure 5.10 shows all the directives that can be used in a configuration headers of a test (or a
test suite). Some details about them are provided below. Any directive can identify a file using
a relative path. The default directory considered for . is always the parent directory of directory

2Variables of the form p_*CMX have no PLUGIN_*CMX counterpart but their meanings should be easy to under-
stand.

3plugin is the module name of the considered plug-in (i.e. as set by $(PLUGIN_NAME)).

Frama-C Plug-in Development Guide CAT RNTL project

5.4 Testing 75

kind Name Specification Default

Toplevel
-add-options Additional options to be passed to the toplevel

-byte Use bytecode toplevel no
-opt Use native toplevel yes

Behavior

-run Delete results, run tests and examine their results yes
-examine Only examine the current results; do not run tests no
-show Run tests and show their results; also set -byte no

-update Take the current results as oracles; do not run tests no

Misc.

-diff cmd Use cmd in order to compare results and oracles diff -u
-j n Set level of parallelism to n 4
-v Increase verbosity (up to twice) 0

-help Display helps no

Figure 5.9: ptests options.

Kind Name Specification default

Command

CMD Program to run ./bin/toplevel.opt
OPT Options given to the program -val -out -input -deps

STDOPT Add and remove options to current default None
EXECNOW Run a command before the test None
FILTER Command name used to filter results None

Test suite DONTRUN Do not execute this test None
FILEREG selects the files to test .*\.\(c|i\)

Miscellaneous COMMENT Comment in the configuration None
GCC Unused (present for compatibility) None

Figure 5.10: Directives in configuration headers of test files.

Frama-C Plug-in Development Guide CAT RNTL project

76 Reference Manual

tests. The DONTRUN directive does not need to have any content, but it is useful to provide an
explanation of why the test should not be run (e.g test of a feature that is currently developed
and not fully operational yet).

As said in Section 4.4.2, these directives can be found in different places:

1. default value of the directive (as specified in Fig. 5.10);

2. inside file tests/test_config;

3. inside file tests/subdir/test_config (for each sub-directory subdir of tests); or

4. inside each test file

As presented in Section 4.4.3, alternative directives for test configuration <special_name> can
be found in slightly different places:

• default value of the directive (as specified in Fig. 5.10);

• inside file tests/test_config_<special_name>;

• inside file tests/subdir/test_config_<special_name> (for each sub-directory subdir of
tests); or

• inside each test file.

For a given test tests/suite/test.ml, each existing file in the sequence above is read in order
and defines a configuration level (the default configuration level always exists).

• At a given configuration level, the default value for directive CMD is the last CMD directive of
the preceding configuration level. Each directive CMD is used only with the next directive
OPT or STDOPT. No test case is generated if there is no further OPT directive. Following
OPT or STDOPT directives are applied on the default program until another directive CMD is
given.

• If there are several directives OPT in the same configuration level, they correspond to
different test cases. The OPT directive(s) of a given configuration level replace(s) the ones
of the preceding level.

• The STDOPT directive takes as default set of options the last OPT directive of the preceding
configuration level. The syntax for this directive is the following.

STDOPT: [[+-]"opt" ...]

options are always given between quotes. An option following a + is added to the current
set of options while an option following a - is removed from it. The directive can be empty
(meaning that the corresponding test will use the standard set of options). As with OPT,
each STDOPT corresponds to a test case.

• The syntax for directive EXECNOW is the following.

Frama-C Plug-in Development Guide CAT RNTL project

5.4 Testing 77

EXECNOW: [[LOG file | BIN file] ...] cmd

Files after LOG are log files generated by command cmd and compared from oracles, whereas
files after BIN are binary files also generated by cmd but not compared from oracles. Full
access path to these files have to be specified only in cmd. All the commands described
by directives EXECNOW are executed in order and before running any of the following tests.
EXECNOW directives from a given level are added to the directives from preceding levels.

• FILEREG directive contains a regular expression indicating which files in the directory con-
taining the current test suite are actually part of the suite. This directive is only usable in
a test_config configuration file.

Frama-C Plug-in Development Guide CAT RNTL project

78 Reference Manual

Frama-C Plug-in Development Guide CAT RNTL project

Appendix A

Changes

This chapter summarizes the changes in this documentation in each Frama-C release. First we
list changes of the last release.

• Changes: fully new appendix

• Command Line Options: new sub-section Storing New Dynamic Option Values

• Configure.in: compliant with new implementations of configure_library and
configure_tool

• Exporting Datatypes: now embeded in new section Plug-in Registration and Access

• GUI: update, in particular the full example has been removed

• Introduction: improved

• Plug-in Registration and Access: fully new section

• Project: compliant with the new interface

• Reference Manual: integration of dynamic plug-ins

• Software architecture: integration of dynamic plug-ins

• Tutorial: improve part about dynamic plug-ins

• Tutorial: use Db.Main.extend to register an entry point of a plug-in.

• Website: better highlighting of the directory containing the html pages

We list changes of previous releases below.

Lithium-20081002+beta1

• GUI: fully updated

• Testing: new sub-section Alternative testing

• Testing: new directive STDOPT

• Tutorial: new section Dynamic plug-ins

• Visitor: ChangeToPost in sub-section Action Performed

80 Changes

Helium-20080701

• GUI: fully updated

• Makefile: additional variables of Makefile.plugin

• Project: new important note about registration of internal states in Sub-section Internal
State: Principle

• Testing: more precise documentation in the reference manual

Hydrogen-20080502

• Documentation: new sub-section Website

• Documentation: new ocamldoc tag @plugin developer guide

• Index: fully new

• Project: new sub-section Internal State: Principle

• Reference manual: largely extended

• Software architecture: fully new chapter

Hydrogen-20080501

• First public release

Frama-C Plug-in Development Guide CAT RNTL project

Bibliography

[1] Patrick Baudin, Jean-Christophe Filliâtre, Thierry Hubert, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI C Specification Language, April
2008.

[2] CEA LIST, Software Reliability Laboratory. Documentation of the static analysis tool
ValViewer, May 2008. http://www.frama-c.cea.fr.

[3] Sylvain Conchon and Jean-Christophe Filliâtre. Type-Safe Modular Hash-Consing. In ACM
SIGPLAN Workshop on ML, Portland, Oregon, United States, September 2006.

[4] Pascal Cuoq and Damien Doligez. Hashconsing in an incrementally garbage-collected sys-
tem, a story of weak pointers and hashconsing in ocaml 3.10.2. In ACM SIGPLAN Workshop
on ML, Victoria, British Columbia, Canada, September 2008.

[5] A. P. Ershov. On programming of arithmetic operations. Communication of the ACM,
1(8):3–6, 1958.

[6] Free Software Foundation. GNU ’make’, April 2006. http://www.gnu.org/software/make/
manual/make.html#Flavors.

[7] Jacques Garrigue, Benjamin Monate, Olivier Andrieu, and Jun Furuse. LablGTK2. http:
//wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgtk.html.

[8] Eiichi Goto. Monocopy and Associative Algorithms in Extended Lisp. Technical Report
TR-74-03, University of Toyko, 1974.

[9] Donald Michie. Memo functions: a language feature with "rote-learning" properties. Re-
search Memorandum MIP-R-29, Department of Machine Intelligence & Perception, Edin-
burgh, 1967.

[10] Donald Michie. Memo functions and machine learning. Nature, 218:19–22, 1968.

[11] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL: Inter-
mediate Language and Tools for Analysis and Transformation of C Programs. In CC ’02:
Proceedings of the 11th International Conference on Compiler Construction, pages 213–228,
London, UK, 2002. Springer-Verlag.

http://www.frama-c.cea.fr
http://www.gnu.org/software/make/manual/make.html#Flavors
http://www.gnu.org/software/make/manual/make.html#Flavors
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgtk.html
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgtk.html

82 BIBLIOGRAPHY

Frama-C Plug-in Development Guide CAT RNTL project

List of Figures

2.1 Dynamic plug-in Integration Overview. 12

2.2 Static plug-in Integration Overview. 15

3.1 Architecture Design. 26

4.1 Representation of the Frama-C Internal State. 42

4.2 Indices of AST nodes. 60

5.1 Frama-C directories. 65

5.2 Cil directories. 66

5.3 Kernel directories. 67

5.4 Main kernel modules. 68

5.5 Sections of configure.in. 69

5.6 Sections of Makefile.in. 70

5.7 Parameters of Makefile.plugin. 72

5.8 Variables defined by Makefile.plugin. 74

5.9 ptests options. 75

5.10 Directives in configuration headers of test files. 75

84 LIST OF FIGURES

Frama-C Plug-in Development Guide CAT RNTL project

Index

Abstract Interpretation, 57
Lattice, see Lattice
Toolbox, 27, 57, 67
Type, 45

Abstract Syntax Tree, see AST
Abstract_interp, 27, 57, 67

Lattice, 57
ACSL, 25, 27, 29, 66

Annotation, 40
Frontend, 66

ai, 67
Alarms, 68
Annotation, 27, 58, 68
Annotations, 68
ANSI C Specification language, see ACSL
Architecture, 11, 14, 25
AST, 25, 27, 41, 44, 57, 58, 66, 68

Copying, 59, 60
Initialiser, 68
Modification, 27, 29, 42, 42, 58, 59
Sharing, see Sharing

Ast_info, 68
Ast_printer, 68

bin, 66
Binary, 66
Boot, 52, 52, 68

C Intermediate Language, see Cil
Call graph computation, 27
Callgraph, 27, 66
CFG, 68
Cfg, 66
CIL, 66, 71

Syntactic Analysis, 66
Visitor, 68

Cil, 25, 26, 27, 29, 52, 57
API, 26, 27
AST, see AST
Attribute, 52
Visitor, 57
Entry Point, 58

Cil, 27, 66

ChangeDoChildrenPost, 60
ChangeTo, 58–60
ChangeToPost, 58
cilVisitor, 57, 58
copy_visit, 59, 60
DoChildren, 58, 60
DoChildrenPost, 58
fill_global_tables, 59
get_name, 59
get_filling_actions, 59, 60
get_original_name, 59
inplace_visit, 59
lzero, 60
reset_behavior_name, 59
set_name, 59
SkipChildren, 58–60
typeOf, 60
vexpr, 60
vfile, 58
vglob, 58
visitAction, 58
visitCilAstType, 58
visitCilFile, 58
visitCilFileCopy, 58
visitCilFileSameGlobals, 58
visitor_behavior, 59
voffs, 58
vstmt, 58
vvdec, 58
vvrbl, 58

cil, 29, 65, 66
ocamlutil, 66
src, 27, 52, 66
ext, 66
frontc, 66
logic, 66

Cil_state, 68
file, 42

Cil_types, 27, 66
BinOp, 60
compinfo, 59, 60
Div, 60

86 INDEX

enuminfo, 59, 60
fieldinfo, 59, 60
file, 57–60
fundec, 45, 46
global, 58
logic_info, 59, 60
logic_var, 60
Mod, 60
offset, 58
predicate_info, 59, 60
Rneq, 60
stmt, 46, 59, 60
TCastE, 60
typeinfo, 59, 60
varinfo, 40, 47, 58–60

CilE, 68
Cilutil, 27, 66

out_some, 66
StmtHashtbl, 47, 66
StmtSet, 46

Cmdline, 12, 15, 20, 53, 68
BOOL, 53, 54
Dynamic
Apply, 54
Apply.String.get, 55
Apply.String.is_set, 55
Register, 54
Register.EmptyString, 54
Register.False, 13, 54
Register.Zero, 54

EmptyString, 53
False, 20, 53, 54
ForceUsers, 55, 56
GeneralFontName, 53
get_selection, 51
IndexedVal, 53
INT, 53, 53, 54
Int, 53
Pdg.BuildAll, 56
Pdg.BuildFct, 56
Pdg.DotBasename, 56
Pdg.DotPostdomBasename, 56
Pdg.Verbosity, 56
S, 53
SemanticUnrollingLevel, 53
STRING, 54
String, 53, 53
True, 53
Zero, 53, 53, 54

Command Line, 55, 67

Option, 12, 15, 20, 41, 51, 52, 53
Dynamic registration, 54
Registration, 55
Static registration, 53

Parsing, 52, 55
Compilation, see Makefile.in
Computation, see Internal State
Computation, 44, 47

Ref, 45, 50
configure.in, 15, 16, 30, 67, 70

check_plugin, 17, 31
configure_library, 33
configure_tools, 33
ENABLE_plugin, 31
FORCE_plugin, 31
HAS_library, 32, 33
INFO_plugin, 31
LIB_SUFFIX, 33
OBJ_SUFFIX, 33
REQUIRE_library, 32, 33
REQUIRE_plugin, 31, 32
SELECTED_library, 33
USE_library, 32, 33
USE_plugin, 31, 32

Consistency, 27, 29, 44, 51, 58, 59
Context Switch, 43, 49
Control Flow Graph, see CFG
Copyright, 23, 63
CVS, 14, 23

Dataflow, 27, 57, 66
Dataflow analysis, 27, 66
Datatype, 45, 47, 49

Copying, 46
Mutable, 45
Name, 46
Persistent, 45
Registration, 45
Rehashing, 46

Datatype, 45, 46
Bool, 45
Couple, 47
Int, 46
List, 46
Nop, 46
Ref, 50

Db, 12, 15, 18, 25, 26, 28, 38, 38, 39, 48, 62,
67, 68

From.self, 48
Impact.compute_pragmas, 38

Frama-C Plug-in Development Guide CAT RNTL project

INDEX 87

Main.extend, 13, 21
progress, 61
Value.Call_Value_Callbacks.extend,

55
Value.compute, 42, 47
Value.is_computed, 42, 44
Value.self, 51

Db_types, 39, 68
debug, 56
Design, 12, 15

main_window_extension_points, 61
register_extension, 61

doc, 66
Documentation, 14, 19, 62, 66, 71

Kernel, 62
Plug-in, see Plugin Documentation
Source, 62

Dynamic, 25, 28, 39, 68
apply, 40, 55
register, 40, 40, 41, 49

Dynamic.register
i, 40

Emacs tags, see Tags
Entry Point, 44

Frama-C, 52, 67
Entry point, 12, 15
Equality

Physical, 49, 50
Structural, 50

except, 51
external, 65
Extlib, 27, 67

mk_fun, 18
NotYetImplemented, 19
the, 60

File, 68
init_from_c_files, 58
init_from_cmdline, 58
init_project_from_cil_file, 42, 58
init_project_from_visitor, 42, 58, 60

FRAMAC_SHARE, 13
From, 32, 48, 49
Function, 27
FunTbl.AlreadyExists, 40
FunTbl.Incompatible_Type, 41
FunTbl.Not_Registered, 41

Globals, 27, 68
set_entry_point, 44

GUI, 12, 15, 52, 53, 61, 67
gui, 67

Hash-consing, 45
Hashtable, 44, 46, 47, 66
Header, 24, 63, 64, 71
headers, 64, 66
Hello, 16, 29
Highlighting, 62
Hook, 12, 15

index.html, 62
index.prehtml, 63
init, 52, 52, 55
Initialisation, 19, 40, 44, 48, 52, 55
Internal State

Cleaning, 50
Internal

Kind, see State Kind
Internal State, 42, 43, 49, 51, 53, 57, 58

Cleaning, 51
Dependency, 44, 47, 49, 51
Postponed, 48, 52

Functionalities, 44
Global Version, 49
Kind, 47
Local Version, 49, 50
Name, 47, 49
Registration, 43, 44, 47
Selection, see Selection
Sharing, 50
The Frama-C One, 41, 51

Inthash, 66
Ival, 27, 67

Journal_loader, 40, 41, 54
LoadFile, 54

Kernel, 25, 26, 27, 29, 49, 52, 67, 71
Toolbox, 67

kernel, 67
Kernel Function, 46
Kernel_computation, 44, 47, 68

StmtHashtbl, 47
Kernel_datatype, 45, 46, 68

KernelFunction, 46, 47
Stmt, 46
Varinfo, 47
VarinfoHashtbl, 46

Kernel_function, 47, 68
Make_Table, 48

Frama-C Plug-in Development Guide CAT RNTL project

88 INDEX

Kernel_type, 40, 68
Kind

Select_Dependencies, 51
Kui, 68

Lablgtk, 32, 33, 61
Lablgtksourceview, 33
Lattice, 26, 27, 57, 67
Lesser General Public License, see LGPL
Lexing, 26, 27
LGPL, 23, 63
lib, 66, 67

plugins, 66
Library, 30, 52, 66, 71

Configuration, 33, 69
Dependency, 31

licences, 64
License, 23, 63, 71
licenses, 66
Linking, 26–28, 52
Lmap, 27, 57, 67
Lmap_bitwise, 27, 57, 67
Loading, 41, 42, 44
Location, 56, 67
Locations, 27, 57, 67

location, 57
Location_Bits, 57
Location_Bytes, 57
valid_enumerate_bits, 57
Zone, 57

Logic Type System, 66
Logic_const, 66

expr_to_term, 60
mk_dummy_term, 60
prel, 60

Logic_typing, 66
Loop, 68

Main, 12, 15, 52, 67
Makefile.in, 15–17, 19, 21, 31, 34, 61–63, 69,

69
@ENABLE_plugin@, 18, 31
CEA_INRIA_LGPL, 63
CEA_LGPL, 23
LICENSES, 64
UNPACKED_DIRS, 35, 39, 70
VERBOSEMAKE, 34, 70

Makefile.plugin, 17, 34, 71
plugin_BFLAGS, 74
plugin_CMI, 74
plugin_CMO, 74

plugin_CMX, 74
plugin_DEPFLAGS, 74
plugin_DIR, 74
plugin_DOCFLAGS, 74
plugin_GENERATED, 74
plugin_OFLAGS, 74
plugin_TESTS_DIRS, 74
plugin_TESTS_LIB, 74
plugin_TYPES_CMO, 74
plugin_TYPES_CMX, 74
plugin_TYPES_TODOC, 74
PLUGIN_BFLAGS, 73
PLUGIN_CMI, 73
PLUGIN_CMO, 18, 34, 73
PLUGIN_DEPENDS, 73
PLUGIN_DEPFLAGS, 73
PLUGIN_DIR, 18, 34, 73
PLUGIN_DISTRIB_BIN, 74
PLUGIN_DISTRIB_EXTERNAL, 74
PLUGIN_DISTRIBUTED, 74
PLUGIN_DOCFLAGS, 73
PLUGIN_ENABLE, 18, 34, 73
PLUGIN_GENERATED, 73
PLUGIN_GUI_CMO, 34, 61, 73
PLUGIN_HAS_EXT_DOC, 73
PLUGIN_HAS_MLI, 19, 34, 73
PLUGIN_INTRO, 62, 73
PLUGIN_NAME, 18, 19, 34, 62, 71, 74
PLUGIN_NO_DEFAULT_TEST, 74
PLUGIN_NO_TEST, 18, 21, 34, 73
PLUGIN_OFLAGS, 73
PLUGIN_TESTS_DIRS, 73
PLUGIN_TESTS_LIB, 73
PLUGIN_TYPES_CMO, 35, 39, 70, 73
PLUGIN_Types_TODOC, 73
PLUGIN_UNDOC, 34, 73

Makefile.template, 13
memo, 47
Memoisation, 41, 43, 47, 48
Memory State, 26, 27
Memory States

Toolbox, 67
memory_states, 67
misc, 67
Module Initialisation, see Initialisation

Occurrence, 31, 61
only, 51, 51
Options, 12, 15, 53, 67

add_plugin, 13, 20, 52, 55, 55, 56

Frama-C Plug-in Development Guide CAT RNTL project

INDEX 89

register_plugin_init, 48, 49, 52, 52
Oracle, 22, 35, 36, 75

Parsing, 26, 27
Pdg, 49, 56
PdgTypes

Pdg.Datatype, 49
Platform, 69
Plug-in, 25, 28, 52

Compilation, 71
Compiled, 66
Database, see Db
Dependency, 30, 30, 32, 69, 73
Directory, 16, 61, 73
Distribution, 74
Documentation, 62, 62, 73
Dynamic, 11, 28, 49, 54
Access, 39
Registration, 39

From, see From
GUI, 12, 15, 32, 52, 61, 73
Hello, see Hello
Implementation, 67
Initialisation, see Initialisation
Interface, 12, 15, 19, 62, 73
License, 63
Name, 71
Occurrence, see Occurrence
Option, 55
Pdg, see Pdg
Slicing, see Slicing
Sparecode, see Sparecode
Static, 11, 13, 28
Access, 38
Registration, 38

Status, 30
Test, 73, 74
Types, 26, 67, 73
Users, see Users
Value, see Value
Wished, 69

plugin_types, 39, 48
plugin_init, 52, 52
plugins.prehtml, 63
Postdominator, 46
Preprocessing, 27
Printer, 68
Project, 29, 41, 52, 53, 58, 59, 67, 71

Current, 42, 44, 49, 51, 59
Initial, 58

Use, 42
Project, 12, 15, 26, 27, 42

clear, 51
Computation
add_dependency, 49
dummy, 48
Register, 44, 47, 49, 50

copy, 45
create, 60
current, 42, 42
Datatype
Imperative, 45, 46
Persistent, 45, 46
Register, 45, 46, 46

IOError, 42
load, 42
on, 43, 51
save, 42
Selection, 51
singleton, 51

set_current, 42, 42, 43
t, 42

project, 67
Ptests, 22, 35, 71, 74

Rangemap, 27
Register, 12, 15, 16

Saving, 29, 41, 42, 44, 47
Selection, 44, 51
self, 47, 47, 48
Session, 42
share, 66
Sharing, 59

Widget, 62
Side-Effect, 50, 52
Slicing, 63
Sparecode, 36
src, 29, 65, 67

ai, 27
gui, 52
kernel, 27
lib, 27
memory_state, 27
misc, 27
project, 27, 52

State Kind, 48
Stmts_graph, 68

Tags, 14, 71
Test, 14, 21, 35, 71, 74

Frama-C Plug-in Development Guide CAT RNTL project

90 INDEX

Configuration, 36
Directive, 37
Header, 36, 38
Suite, 15, 35, 36, 66

Test
Directive
CMD, 75, 76
COMMENT, 75
DONTRUN, 75
EXECNOW, 75, 76
FILEREG, 75, 77
FILTER, 75
GCC, 75
OPT, 21, 37, 75
STDOPT, 75, 76

test_config, 36, 76, 77
tests, 35, 66, 76
Tool, 30

Configuration, 33, 69
Dependency, 31

toplevel, 67
toplevel_init, 44, 52, 52
Type, 40, 67

func, 40, 55
string, 40, 55
t, 40
unit, 40, 55

Type value, 40, 41, 67
Typing, 26, 27

Users, 55
Users_register, 55

Value, 32, 34, 56
Variable

Global, 27
Version, 68
Visitor, 57

Behavior, 59, 59
Cil, see Cil Visitor
Copy, 42, 59, 59
In-Place, 59, 59

Visitor, 27, 68
generic_frama_c_visitor, 58, 60
vglob_aux, 58
vstmt_aux, 58

Website, 62

Frama-C Plug-in Development Guide CAT RNTL project

	Foreword
	Introduction
	Tutorial
	Dynamic Plug-in
	Setup
	Plug-in Integration Overview
	Hello Frama-C World

	Static Plug-in
	Setup
	Plug-in Integration Overview
	Hello Frama-C World
	Configuration and Compilation
	Connection with the Frama-C World
	Extending the Command Line
	Testing
	Copyright your Work

	Software Architecture
	General Description
	Cil: C Intermediate Language
	Kernel
	Plug-ins

	Advanced Plug-in Development
	File Tree Overview
	Configure.in
	Principle
	Addition of a Simple Plug-in
	Addition of Library/Tool Dependencies
	Addition of Plug-in Dependencies
	Configuration of New Libraries or Tools

	Makefile.in
	Testing
	Using ptests
	Configuration
	Alternative Testing

	Plug-in Registration and Access
	Static Registration and Access
	Dynamic Registration and Access

	Project Management System
	Overview and Key Notions
	Using Projects
	Internal State: Principle
	Registering a New Datatype
	Registering a New Internal State
	Direct Use of Low-level Functor Project.Computation.Register
	Selections

	Initialisation Steps
	Command Line Options
	Storing New Static Option Values
	Storing New Dynamic Option Values
	Registering New Options

	Locations
	Representations
	Map Indexed by Locations

	Visitors
	Entry Points
	Methods
	Action Performed
	Visitors and Projects
	In-place and Copy Visitors
	Differences Between the Cil and Frama-C Visitors
	Example

	GUI Extension
	Documentation
	General Overview
	Plug-in Source Documentation
	Website

	License Policy

	Reference Manual
	File Tree
	Directory cil
	Directory src

	Configure.in
	Makefile.in
	Sections
	Variables of Makefile.plugin

	Testing

	Changes
	Bibliography
	List of Figures
	Index

