
Kaputt 1.2

Reference Manual
http://kaputt.x9c.fr

Copyright c© 2008-2012 Xavier Clerc – kaputt@x9c.fr
Released under the GPL v3

August 29, 2012

http://kaputt.x9c.fr
mailto:kaputt@x9c.fr

i

Contents

1 Overview 1
1.1 Purpose . 1
1.2 License . 1
1.3 Contributions . 2

2 Building Kaputt 3
2.1 Step 0: dependencies . 3
2.2 Step 1: configuration . 3
2.3 Step 2: compilation . 3
2.4 Step 3: installation . 4

3 Using Kaputt 5
3.1 Running tests from compiled code . 5
3.2 Running tests from the toplevel . 6
3.3 Running tests from .mlt files . 6

4 Writing assertion-based tests 9

5 Writing specification-based tests 11

6 Output modes 15

1

Chapter 1

Overview

1.1 Purpose

Kaputt is a unit testing tool for the OCaml language1. Its name stems from the following
acronym: Kaputt is A Popperian Unit Testing Tool. The adjective popperian is derived from
the name of Karl Popper, a famous philosopher of science who is known for forging the
concept of falsifiability. The tribute to Popper is due to the fact that Kaputt, like most test-
based methodologies, will never tell you that your function is correct; it can only point out errors.

Kaputt features two main kinds of tests:

• assertion-based tests, inspired by the xUnit tools2;

• specification-based tests, inspired by the QuickCheck tool3.

When writing assertion-based tests, the developer explicitly encodes input values and checks
that output values satisfy given assertions. When writing specification-based tests, the
developer encodes the specification of the tested function and then requests the library to either
generate random values, or enumerate values to be tested against the specification.

Kaputt also provides shell-based tests that barely execute commands such as grep, diff, etc.
They can be regarded as a special kind of assertion-based tests, and can be useful to run the
whole application and compare its output to reference runs whose output has been stored into
files.

1.2 License

Kaputt is distributed under the terms of the gpl version 3. This licensing scheme should not
cause any problem, as test versions of applications are intended to be used during development
but should not be released publicly.

1The official OCaml website can be reached at http://caml.inria.fr and contains the full development suite
(compilers, tools, virtual machine, etc.) as well as links to third-party contributions.

2Unit testing tools for Java (JUnit – http://junit.org), OCaml (OUnit – http://www.xs4all.nl/

~mmzeeman/ocaml/), etc.
3http://www.cs.chalmers.se/~rjmh/QuickCheck/

http://caml.inria.fr
http://junit.org
http://www.xs4all.nl/~mmzeeman/ocaml/
http://www.xs4all.nl/~mmzeeman/ocaml/
http://www.cs.chalmers.se/~rjmh/QuickCheck/

1. OVERVIEW 2

1.3 Contributions

In order to improve the project, I am primarily looking for testers and bug reporters. Pointing
errors in documentation and indicating where it should be enhanced is also very helpful.
Bugs and feature requests can be made at http://bugs.x9c.fr.
Other requests can be sent to kaputt@x9c.fr.

http://bugs.x9c.fr
mailto:kaputt@x9c.fr

3

Chapter 2

Building Kaputt

2.1 Step 0: dependencies

Before starting to build Kaputt, one first has to check that dependencies are already installed.
The following elements are needed in order to build Kaputt:

• OCaml, version 4.00.0;

• make, in its GNU Make 3.81 flavor;

• a classical Unix shell, such as bash;

• optionally: Findlib1, version 1.3.3.

2.2 Step 1: configuration

The configuration of Argot is done by executing ./configure. One can specify elements if they
are not correctly inferred by the configure script; the following switches are available:

• -ocaml-prefix to specify the prefix path to the OCaml installation (usually /usr/local);

• -ocamlfind to specify the path to the ocamlfind executable;

• -no-native-dynlink to disable the build of the native version, even if native dynamic
linking is available.

The Java2 version will be built only if the ocamljava3 compiler is present and located by the
makefile. The syntax extension will be compiled only to bytecode.

2.3 Step 2: compilation

The actual build of Kaputt is launched by executing make all. When build is finished, it is
possible to run some simple tests by running make tests. Documentation can be generated by
running make doc.

1Findlib, a library manager for OCaml, is available at http://projects.camlcity.org/projects/findlib.

html.
2The official website for the Java Technology can be reached at http://java.sun.com.
3OCaml compiler generating Java bytecode, by the same author – http://www.ocamljava.org

http://projects.camlcity.org/projects/findlib.html
http://projects.camlcity.org/projects/findlib.html
http://java.sun.com
http://www.ocamljava.org

2. BUILDING KAPUTT 4

2.4 Step 3: installation

Kaputt is installed by executing make install. According to local settings, it may be nec-
essary to acquire privileged accesses, running for example sudo make install. The actual
installation directory depends on the use of ocamlfind: if present the files are placed inside the
Findlib hierarchy, otherwise they are placed in the directory ‘ocamlc -where‘/kaputt (i. e.
$PREFIX/lib/ocaml/kaputt).

5

Chapter 3

Using Kaputt

3.1 Running tests from compiled code

To use Kaputt, it is sufficient to compile and link with the library. This is usually done by
adding of the following to the compiler invocation:

• -I +kaputt kaputt.cma (for ocamlc compiler);

• -I +kaputt kaputt.cmxa (for ocamlopt compiler);

• -I +kaputt kaputt.cmja (for ocamljava compiler).

Since version 1.0, to access bigarray- and num-specific elements, it is necessary to link with
respectively kaputtBigarray.cm[oxj] and kaputtNums.cm[oxj].

Typically, the developer wants to compile the code for tests only for internal (test) versions, and
not for public (release) versions. Hence the need to be able to build two versions. The IFDEF

directive of camlp4 can be used to fulfill this need. Code sample 1 shows a trivial program that
is designed to be compiled either to debug or to release mode.

Code sample 1 Trivial program featuring two versions (source.ml).

let () =

IFDEF DEBUG THEN

print_endline "debug mode on"

ELSE

print_endline "debug mode off"

ENDIF

To compile the debug version, one of the following commands (according to the compiler used)
should be issued:

• ocamlc -pp ’camlp4oof -DDEBUG’ source.ml;

• ocamlopt -pp ’camlp4oof -DDEBUG’ source.ml;

• ocamljava -pp ’camlp4oof -DDEBUG’ source.ml.

At the opposite, to compile the release version, one of following commands should be executed:

3. USING KAPUTT 6

• ocamlc -pp camlp4oof source.ml;

• ocamlopt -pp camlp4oof source.ml;

• ocamljava -pp camlp4oof source.ml.

This means that the developer can choose the version to compile by only specifying a different
preprocessor (precisely by enabling/disabling a preprocessor argument) to be used by the invoked
OCaml compiler.

3.2 Running tests from the toplevel

Code sample 2 shows how to use Kaputt from a toplevel session. First, the Kaputt directory
is added to the search path. Then, the library is loaded and the module containing shorthand
definitions is opened. Finally, the check method is used in order to check that the successor of
an odd integer is even.

Code sample 2 Toplevel session running a generator-based test.

OCaml version 4.00.0

#directory "+kaputt";;

#load "kaputt.cma";;

open Kaputt.Abbreviations;;

check Gen.int succ [Spec.is_odd_int ==> Spec.is_even_int];;

Test ’untitled no 1’ ... 100/100 cases passed

- : unit = ()

#

3.3 Running tests from .mlt files

Since version 1.2, it is possible to use a preprocessor (named kaputt pp.byte) in order to
store tests in .mlt files. The underlying idea is to use the file mod.mlt to store the tests for
the module Mod whose implementation is in file mod.ml. The preprocessor just appends the
contents of mod.mlt to mod.ml when the compiler processes the file mod.ml. If no .mlt file is
found alongside the .ml file, the preprocessor does nothing.

The kaputt pp.byte should always be invoked with a first parameter either equal to on or off,
indicating whether concatenation of .ml and .mlt files should occur. The other parameters
should indicate which preprocessor to use for the .ml file, leading to a command-line with the
following form:

ocamlc -c -pp ’./kaputt pp.byte on camlp4o’ source.ml

or

ocamlc -c -pp ’./kaputt pp.byte off camlp4o’ source.ml

7 Running tests from .mlt files

This way of organizing tests is useful because is allows to simultaneously:

• have tests stored separately, in their own files;

• have test code that can access to every element of the tested module (including non-
exported elements);

• easily switch between building with or without test code.

When using the preprocessor while compiling with the ocamlbuild tool, one has to be cautious
and not to forget to copy .mlt files into the build directory of ocamlbuild. Assuming that
all source files are in the src directory and its subdirectories, this can be done through the
ocamlbuild plugin shown by code sample 3. Then, it is sufficient to tag files with the kaputt

tag defined by the plugin with a line such as <src/**/*.ml>: kaputt in the tags file.

Code sample 3 myocamlbuild.ml file with support for Kaputt preprocessor.

open Ocamlbuild_plugin

open Ocamlbuild_pack

let rec copy_mlt_files path =

let elements = Pathname.readdir path in

Array.iter

(fun p ->

if Pathname.is_directory (path / p) then

copy_mlt_files (path / p)

else if Pathname.check_extension p "mlt" then

let src = path / p in

let dst = !Options.build_dir / path / p in

Shell.mkdir_p (!Options.build_dir / path);

Pathname.copy src dst

else

())

elements

let () =

dispatch begin function

| After_rules ->

copy_mlt_files "src";

flag ["kaputt"; "pp"]

(S [A"kaputt_pp.byte"; A"on"; A"camlp4o"])

| _ -> ()

end

9

Chapter 4

Writing assertion-based tests

When writing assertion-based tests, one is mainly interested in the Assertion and Test modules.
The Assertion module provides various functions performing tests over values. Then, the Test

module allows to run the tests and get some report about their outcome. An assertion-based
test built by the Test.make assert test function is made of four elements:

• a title;

• a set up function, whose signature is unit -> ’a;

• a function performing the actual tests, whose signature is ’a -> ’b;

• a tear down function, whose signature is ’b -> unit.

The idea of the set up and tear down functions is that they bracket the execution of the tested
function. If there is no data to pass to the test function (i.e. its signature is unit -> unit),
the obvious choices for set up and tear down are respectively Test.return () and ignore;
another possibility is to use the make simple test function. Code sample 4 shows a short
program declaring and running two tests, the first one uses no data while the second one does.
The second test also exhibits the fact that the title is optional.

Mock functions may be useful when writing assertion-based tests. Mock functions are functions
that can be created from usual functions, from 〈 input, output 〉 couples, or from 〈 input, output
〉 sequences. They also record all the calls made to the function, allowing to check if the function
has been used as expected. Code sample 5 shows how to write an assertion-based test for the
List.map function, ensuring that the higher-order function is called on each element of the
passed list from left to right.

4. WRITING ASSERTION-BASED TESTS 10

Code sample 4 Assertion-based tests.

open Kaputt.Abbreviations

let t1 =

Test.make_simple_test

~title:"first test"

(fun () -> Assert.equal_int 3 (f 2))

let t2 =

Test.make_assert_test

(fun () -> open_in "data")

(fun ch -> Assert.equal_string "waited1" (f1 ch); ch)

close_in_noerr

let () = Test.run_tests [t1; t2]

Code sample 5 Mock function and assertion-based tests.

open Kaputt.Abbreviations

let () =

Test.add_simple_test

(fun () ->

let eq_int_list = Assert.make_equal_list (=) string_of_int in

let f = Mock.from_function succ in

let i = [0; 1; 2; 0] in

let o = List.map (Mock.func f) i in

let o’ = [1; 2; 3; 1] in

eq_int_list o’ o;

eq_int_list i (Mock.calls f);

Assert.equal_int 4 (Mock.total f))

11

Chapter 5

Writing specification-based tests

When writing specification-based tests, one is mainly interested in the Generator,
Specification, and Test modules. The Generator module defines the concept of generator
that is a function randomly producing values of a given type, and provides implementations for
basic types and combinators. The Specification module defines the concept of specification
that is predicates over values and their images through the tested function, as well as predicates
over basic types and combinators. A specification-based test built by Test.make random test

is made of nine elements (the six first ones being optional):

• a title;

• an integer, indicating how many cases should be generated;

• an integer, indicating how tries should be made to generate an input value matching the
specification1;

• a classifier, used to categorize the generated cases;

• a reducer, used to try to produce smaller counterexamples;

• a randomness source;

• a generator;

• a function to be tested;

• a specification.

The generator, of type ’a Generator.t, is used to randomly produce test cases. Tests cases
are produced until the requested number has be reached. One should notice that a test case is
counted if and only if the generated value satisfies one of the preconditions of the specification.
The classifier is used to characterize the generated test cases to give the developer an overview
of the coverage of the test (in the sense that the classifier gives hints about the portions of code
actually executed). For complete coverage information, one is advised to use the Bisect tool2

by the same author.

1Useful to avoid non-terminating issues if a non-satisfiable precondition is passed in the specification.
2Code coverage tool for the OCaml language – http://bisect.x9c.fr

http://bisect.x9c.fr

5. WRITING SPECIFICATION-BASED TESTS 12

The specification is a list of 〈precondition, postcondition〉 couples. This list should be regarded
as a case-based definition. When checking if the function matches its specification, Kaputt will
determine the first precondition from the list that holds, and ensure that the corresponding
postcondition holds: if not, a counterexample has been found.

Assuming that the tested function has a signature of ’a -> ’b, a precondition has type ’a

predicate (that is ’a -> bool) and a postcondition has type (’a * ’b) predicate (that is
(’a * ’b) -> bool). The preconditions are evaluated over the generated values, while the
postconditions are evaluated over 〈generated values, image by tested function〉 couples.
An easy way to build 〈precondition, postcondition〉 couples is to use the => infix operator.
Additionally, the ==> infix operator can be used when the postcondition is interested only
in the image through the function (ignoring the generated value), thus enabling lighter notation.

Code sample 6 shows how to build a test for function f whose domain is the string type. The
classifier stores generated values into two categories, according to the length of the string. The
pre i functions are of type string -> bool, while the post i functions are of type (string *

t) -> bool where t is the codomain (also sometimes referred to as the “range”) of the tested
function f.

Code sample 6 Specification-based tests.

open Kaputt.Abbreviations

let t =

Test.make_random_test

~title:"random test"

~nb_runs:128

~classifier:(fun s -> if (String.length s) < 4 then "short" else "long")

(Gen.string (Gen.make_int 0 16) Gen.char)

f

[pre_1 => post_1 ;

...

pre_n => post_n]

let () = Test.run_test t

It is also possible to write specification for partial function, and to check then though
xyz partial functions. Partial functions have a codomain type that is ’b outcome rather
than simply ’b. The Specification.outcome type is a sum type with two constructors:
Result of ’b, and Exception of exn. The Specification module provides two combina-
tors is exception and is result that allow to respectively test an exceptional result and a
normal result. Code sample 7 tests that the tested f function (of type int -> int) raises an
exception when passed an odd value, and return an even value when passed an even value.

Code sample 7 Specification-based tests of a partial function.

open Kaputt.Abbreviations

let () =

check_partial

Gen.int

f

[Spec.is_even_int ==> Spec.is_result Spec.is_even_int ;

Spec.is_odd_int ==> Spec.is_exception Spec.always]

15

Chapter 6

Output modes

The previous chapter have exposed how to run tests using the Test.run tests function. When
only passed a list of tests, the outcome of these tests is written to the standard output in a
(hopefully) user-friendly text setting. It is however possible to change both the destination and
the layout by supplying an optional output parameter of type Test.output mode, that is a sum
type with the following constructors:

• Text output of out channel

classical layout, destination being the given channel – cf. code sample 8

• Html output of out channel

html table-based layout, destination being the given channel

• Xml output of out channel

xml layout using the dtd shown by code sample 11, destination being the given channel
– cf. code sample 9

• Xml junit output of out channel

JUnit-compatible xml layout (enabling for instance Jenkins1 integration), destination be-
ing the given channel

• Csv output of out channel * string

csv layout using the given string as the separator, destination being the given channel –
cf. code sample 10

The passed channel is closed if it is neither stdout, nor stderr.

1Continuous integration server http://jenkins-ci.org/

http://jenkins-ci.org/

6. OUTPUT MODES 16

Code sample 8 Example of text output.

Test ’succ test’ ... 100/100 cases passed

Test ’untitled no 1’ ... 10/10 cases passed

Test ’sum of odds’ ... 200/200 cases passed

Test ’strings’ ... 0/2 case passed

counterexamples: "eYbHu", "UEggsF"

categories:

short -> 1 occurrence

long -> 1 occurrence

Test ’lists’ ... 0/2 case passed

counterexamples: [6; 5; 1; 3; 6;], [3; 2; 6;]

Code sample 9 Example of xml output.

<kaputt-report>

<random-test name="succ test" valid="100" total="100" uncaught="0">

</random-test>

<random-test name="untitled no 1" valid="10" total="10" uncaught="0">

</random-test>

<random-test name="sum of odds" valid="200" total="200" uncaught="0">

</random-test>

<random-test name="strings" valid="0" total="2" uncaught="0">

<counterexamples>

<counterexample value=""OAsdUXKf""/>

<counterexample value=""dhVMK""/>

</counterexamples>

<categories>

<category name="long" total="1"/>

<category name="short" total="1"/>

</categories>

</random-test>

<random-test name="lists" valid="0" total="2" uncaught="0">

<counterexamples>

<counterexample value="[5; 1; 6;]"/>

<counterexample value="[6; 3;]"/>

</counterexamples>

</random-test>

</kaputt-report>

17

Code sample 10 Example of CSV output.

random-test (stats)|succ test|100|100|0

random-test (stats)|untitled no 1|10|10|0

random-test (stats)|sum of odds|200|200|0

random-test (stats)|strings|0|2|0

random-test (counterexamples)|strings|"SHwJpJ"|"tbMlVNwqh"

random-test (stats)|lists|0|2|0

random-test (counterexamples)|lists|[3; 6; 6;]|[3; 4; 5;]

6. OUTPUT MODES 18

Code sample 11 dtd used for xml output.

<!ELEMENT kaputt-report

(passed-test|failed-test|uncaught-exception|random-test|enum-test|shell-test)*>

<!ELEMENT passed-test EMPTY>

<!ATTLIST passed-test name CDATA #REQUIRED>

<!ELEMENT failed-test EMPTY>

<!ATTLIST failed-test name CDATA #REQUIRED>

<!ATTLIST failed-test expected CDATA>

<!ATTLIST failed-test not-expected CDATA>

<!ATTLIST failed-test actual CDATA #REQUIRED>

<!ATTLIST failed-test message CDATA>

<!ELEMENT uncaught-exception EMPTY>

<!ATTLIST uncaught-exception name CDATA #REQUIRED>

<!ATTLIST uncaught-exception exception CDATA #REQUIRED>

<!ELEMENT random-test (counterexamples?,categories?)>

<!ATTLIST random-test name CDATA #REQUIRED>

<!ATTLIST random-test valid CDATA #REQUIRED>

<!ATTLIST random-test total CDATA #REQUIRED>

<!ATTLIST random-test uncaught CDATA #REQUIRED>

<!ELEMENT enum-test (counterexamples?)>

<!ATTLIST enum-test name CDATA #REQUIRED>

<!ATTLIST enum-test valid CDATA #REQUIRED>

<!ATTLIST enum-test total CDATA #REQUIRED>

<!ATTLIST enum-test uncaught CDATA #REQUIRED>

<!ELEMENT counterexamples (counterexample*)>

<!ELEMENT counterexample EMPTY>

<!ATTLIST counterexample value CDATA #REQUIRED>

<!ELEMENT categories (category*)>

<!ELEMENT category EMPTY>

<!ATTLIST category name CDATA #REQUIRED>

<!ATTLIST category total CDATA #REQUIRED>

<!ELEMENT shell-test EMPTY>

<!ATTLIST shell-test name CDATA #REQUIRED>

<!ATTLIST shell-test exit-code CDATA #REQUIRED>

	Overview
	Purpose
	License
	Contributions

	Building Kaputt
	Step 0: dependencies
	Step 1: configuration
	Step 2: compilation
	Step 3: installation

	Using Kaputt
	Running tests from compiled code
	Running tests from the toplevel
	Running tests from .mlt files

	Writing assertion-based tests
	Writing specification-based tests
	Output modes

