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Abstract

bindlib is a library and a camlp4 syntax extension for the OCaml language. It
proposes a set of tools to manage data structures with bound and free variables. It
includes fast substitution and management of variables names including renaming.
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1 Introduction.

Data structures with bound and free variables are not so rare in computer science. For
instance, computer programs and mathematical formulae are data structures using bound
and free variables and are needed to write compilers and computer algebra system.

Representing these variables, implementing the necessary primitives (substitution of a vari-
ables, renaming to avoid captures, etc.) is not so easy and often the simple implementation
result in poor performance, especially when substitution is needed.

Bindlib aims at providing a library resulting in both simple and efficient code. It provides
tools to deal with substitution and renaming.

The version 3.0 of bindlib is simpler to use than the previous ones because of its camlp4
syntax extension and completely rewritten documentation.

This documentation is in two parts : an informal presentation introducing each concept step
by step illustrated with examples. Then, a more formal presentation in the appendix which
includes the syntax and an equational semantics of the library.

For our examples, we assume basic knowledge of the λ-calculus which is the simplest data
structure with bound variables (Wikipedia has a good introduction on this topic). For the
second example, we will give the required mathematical definitions.

2 Using and installing

This library only works with ocaml version 3.09.x., 3.10.x and after

To install the library follow the following steps:

cp Makefile-3.XX Makefile copy Makefile-3.09 or Makefile-3.10 to Makefile depending upon
your ocaml version

make checkconfig : check the guessed value of BINDIR and LIBDIR. If it does not suit
you, edit the Makefile.

make : this compiles the library.

make check : optional, to test the library.

make install : to install everything.

To use the library, compile your files with one of the following commands:

ocamlc -pp camlp4bo -c foo.ml : to produce foo.cmo from foo.ml, if it uses bindlib.

ocamlc -pp camlp4bop -c foo.ml : to produce foo.cmo from foo.ml, if it uses both bindlib
and stream pattern matching.
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ocamlc -pp "camlp4 pa bindlib.cmo ..." -c foo.ml : if you want to use bindlib to-
gether with your other favorite extension.

The same options work with ocamlopt.

Finally, link with bindlib.cma or bindlib.cmxa.

3 Basic types

Before considering bound and free variables in data structures, we should say what a data
structure is. For this documentation, we will consider that a data structure is an ML value
(like a list of integers, a tree, etc.) with no ML function inside.

Now, the main type constructor of the bindlib library is:

(’a,’b) binder.

This is the type of a data structure of type ’b with one bound variable of type ’a.

For variables, bindlib provide a type

’a variable

for variable in data structure of type ’a.

With these type constructors, we can define easily the type of lambda-terms:

type term =
App of term * term (* application of two terms *)

| Abs of (term, term) binder (* abstraction of a variable in a term *)
| FVar of term variable (* free variable *)

4 How to use a data structure with variables ?

Now let us start by using data structure with bound and free variables. Consider the following
function to print lambda-terms:

let fVar x = FVar(x)

let rec print_term t =
App(t1,t2) ->
print_string "(";
print_term t1; print_string " "; print_term t2;
print_string ")"

| Abs f ->
match f with bind fVar x in t ->
print_string "fun "; print_string (name_of x); print_string " ";
print_term t

| FVar(x) ->
print_string (name_of x)
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The first line creates a function synonymous to the FVar constructor. Then, printing of
application is straight forward.

For abstraction, we use one of our camlp4 extension: match f with bind fVar x in t
destruct f which is an expression e with one bound variable v (remark: the programmer has
no direct access to e and v, this is why we do not use a typewriter font for them). A new
variable x is created by this construct, and t denotes e where v is replaced by fVar x. This
explains the two last line of the program. Notice the function name_of to get the variable
name.

Let us now give an equivalent to the camlp4 syntax extension we use. The line

match f with bind fVar x in t ->

is equivalent to the following three lines:

let name = binder_name f in
letvar fVar x as name in
let t = subst f (free_of x) in

These lines use the following functions:

• binder_name : (’a, ’b) binder -> string to get the name of the bound variable.

• letvar fVar x as name in is yet another a camlp4 extension creating a new variable
x : term variable.

fVar means that free_of x evaluates to fVar x which evaluates itself to FVar(x)

as name means that the name of the variable x will be name. This means that name_of x
evaluates to name.

This camlp4 syntax extension is equivalent to let x = new_var fVar name in where

new_var : (’a variable -> ’a) -> string -> ’a variable

(we will see later the interest of the letvar camlp4 extension)

• free_of : ’a variable -> ’a has been explained above with letvar.

• subst : (’a, ’b) binder -> ’a -> ’b to substitute a value to the bound variable
in f.

n

5 How to construct a data structure with variables ?

To construct data structure with bound variables, we provide a new type

’a bindbox
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Which is the type of a data structure of type ’a under construction.

In fact this type contructor is a monad. If you do not know what a monad is just consider this
is the notion of morphism associated to typed programming language. If you do not know
what a morphism is, then just ignore this paragraph !

Let use give some examples:

let fVar x = FVar(x)

let idt = unbox (Abs(^ bind fVar x in x ^))
let delta = unbox (Abs(^ bind fVar x in App(^x,x^) ^))

Here are the basic idea in the above examples: we use Abs(^ ... ^) and App(^ ... ^) to
construct value of type term bindbox instead of term directly. Then, the camlp4 syntax ex-
tension bind fVar x in allows to construct a value of type (term, term) binder bindbox.
Finally, unbox finishes the work and produces a value of type term from a value of type
term bindbox.

Here is a list with more detailed explanation of the common functions and camlp4 syntax
extensions to construct data structure with bound and free variables:

• unit : ’a -> ’a bindbox : you use this function when you have an object of type ’a
that you want to extend.

Warning: with unit t, you will not be able to bind free variables in t.

• (^t^) : a camlp4 syntax extension for unit t (t is parsed at the priority LEVEL ":=").

• (^t1, ... , tn^) : to construct tuples in the bindbox type. If t1 : ’a1 bindbox,
. . . , tn : ’an bindbox, then (^t1, ..., tn^) : (’a1 * ... * ’an) bindbox

• [^t1; ... ; tn^] to construct lists in the bindbox type. If t1 : ’a bindbox, . . . ,
tn : ’a bindbox, then [^t1; ...; tn^] : ’a list bindbox

• [|^t1; ... ;tn^|] to construct arrays in the bindbox type. If t1 : ’a bindbox, . . . ,
tn : ’a bindbox, then [|^t1; ...; tn^|] : ’a array bindbox

• ( ^:: ) : ’a bindbox -> ’a list bindbox -> ’a list bindbox: to construct
list cells. Remark: this is a camlp4 extension to have the same priority as ::.

• Cstr(^t1, ... , tn^) : to apply a variant constructor in the bindbox type. This also
works for polymorphic variant constructors.

Example: if t1 and t2 are of type term bindbox, then App(^t1,t2^) is also of type
term bindbox.

More generally, if you have a type constructor Cstr with the following typing rule:

x1 : t1 . . . xn : tn
Cstr(x1, . . . , xn) : u

Then, you also have

x1 : t1 bindbox . . . xn : tn bindbox

Cstr(^x1, . . . , xn^) : u bindbox
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• {^ l1 = t1; ...; ln = tn ^} : to construct a structure in the bindbox type.

Example: if one defines the type defi = { name : string; value : term} and if
t : term bindbox, then {^ name = (^ "foo" ^); value = t ^} : defi bindbox.

Now one also need the following functions and camlp4 extension to deal with variables:

• bindbox_of : ’a variable -> ’a bindbox : this is the correct (and unique) way to
use a variable in order to be able to bind it.

• bindvar x in t : this is a camlp4 extension. If x : ’a variable and t : ’b bindbox,
then bindvar x in t : (’a, ’b) binder bindbox.

• bind f x in t : this is a camlp4 extension (the variable x is bound in t) and it is a
short cut for:

letvar f x’ in
let x = bindbox_of x’ in
bindvar x’ in t

• unbox : ’a bindbox -> ’a : this is the function to produce the final data-structure.
In unbox t, all the variables that were not bound using the bind or bindvar camlp4 ex-
tension will become free variables by calling the function f : ’b variable -> ’b that
you had to give when creating the variable with the letvar or bind camlp4 extension.

Here is another example, which performs the following transformation on λ-term (it marks
all the application with a variable):

mark(t) = λx.φx(t)
φx(y) = y

φx(u v) = xφx(u) φx(v)
φx(λy.u) = λy.(φxu)

Here is the corresponding code:

let mark t =
let rec phi x = function
FVar(y) -> bindbox_of y

| App(u,v) -> App(^App(^x,phi x u^),phi x v^)
| Abs(f) ->

match f with bind fVar y in f’ ->
Abs(^ bindvar y in phi x f’ ^)

in
unbox(Abs(^ bind fVar x in phi x t^))

This code is very similar to the mathematical definition. Here is another example: the
computation of the normal form of a term:
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(* weak head normal form *)
let rec whnf = function
App(t1,t2) as t0 -> (
match (whnf t1) with
Abs f -> whnf (subst f t2)

| t1’ ->
(* a small optimization here when the term is in whnf *)
if t1’ == t1 then t0 else App(t1’, t2))

| t -> t

(* call by name normalisation *)
let norm t = let rec fn t =
match whnf t with
Abs f ->
match f with bind fVar x in u ->
Abs(^ bindvar x in fn u ^)

| t ->
let rec unwind = function

FVar(x) -> bindbox_of x
| App(t1,t2) -> App(^unwind t1,fn t2^)
| t -> assert false

in unwind t
in unbox (fn t)

This function is very similar to the previous one, with one function to compute the “weak
head normal form”, which is used in the second function to compute the full normal form.
Understanding this function is more a question of knowledge of λ-calculus than a problem of
the library itself.

6 Naming of variables

The bindlib library uses string for variable names. Names are considered as the concatena-
tion of a prefix and a possibly empty suffix. The suffix is the longest terminal substring of
the name composed only of digits.

Example: in "toto0" the suffix is "0".

To choose the initial name of a variable, you use the "as" keyword in

letvar f x as name in t

This means that name_of x will return name. However, when binding x using bindvar x in u,
the suffix of the name may be changed to avoid name conflict. In letvar f x in t, the de-
fault name for x will be "x" (that is the string build from the name of the identifier).

To access the name of variables, bindlib provides the following functions:

• name_of : ’a variable -> string to access the name of a free variable.
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• binder_name : (’a, ’b) variable -> string to access the name of a bound vari-
able.

• match t with bind f x in u -> ...: if t : (’a, ’b) binder, then we have x of
type ’a variable and name_of x will return the same value as binder_name t.

Using bindlib you are sure that bound variables are renamed to avoid variable conflict. But
this is not enough:

1. Distinct free variables may have the same name. Renaming of free variables can not be
done automatically because there is no way to know the variables that are used in the
same “context”.

2. The subst function does not perform renaming. Therefore, it is only just after the call
to unbox that the bound variables are named correctly. If you use the result of unbox
and perform substitution then, the naming may become incorrect.

This can not be avoided if one want a reasonable complexity for substitution.

3. By default, bindlib perform minimal renaming. This means it accepts name collision in
fun x -> fun x -> x that you might prefer printed as fun x -> fun x0 -> x0.

To solve these problems, bindlib provides an abstract notion of context which are “sets” of
free variables which should have distinct names.

• type context is an abstract type.

• empty_context : context is the initial empty context.

• letvar f x as name for ctxt in ... The argument of for must be an Ocaml iden-
tifier of type context. The name given with as name may be changed (only the suffix is
changed) into a name not already in ctxt. Then, the identifier ctxt is rebound, under
the scope of letvar, to an extended context containing the new variable name.

This construct can also be used with the bind f x as name for ctxt in ... camlp4
extension.

This fixes point (1). For the two other points, there are two solutions, depending if you prefer
minimal renaming or the so called Barendregt convention (no bound variable should have the
same name than a free variable, even is the later does not occur in the scope of the former).

If you want to follow Barendregt convention, this is easy, your printing functions should use
a context as in:

let rec print_term ctxt = function
App(t1,t2) ->
print_string "(";
print_term ctxt t1;
print_string " ";
print_term ctxt t2;
print_string ")"
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| Abs f ->
match f with bind fVar x for ctxt in t ->
print_string "fun ";
print_string (name_of x);
print_string " ";
print_term ctxt t

| FVar(v) ->
print_string (name_of v)

If you prefer minimal renaming (which is required when you really want to refer to names of
bound variables), you have nothing to do if you are certain that no substitution have been
performed. Otherwise, you need what I call a “lifting” function to copy the data structure
before printing as in the following example:

let rec lift_term = function
FVar(y) -> bindbox_of y

| App(u,v) -> App(^lift_term u, lift_term v^)
| Abs(f) ->

match f with bind fVar x in u ->
Abs(^ bindvar x in lift_term u ^)

let print_term t =
let rec fn = function

App(t1,t2) ->
print_string "(";
fn t1;
print_string " ";
fn t2;
print_string ")"

| Abs f ->
match f with bind fVar x in t ->
print_string "fun ";
print_string (name_of x);
print_string " ";
fn t

| FVar(v) ->
print_string (name_of v)

in
fn (unbox (lift_term t))

7 A more complete example and advanced features

This section covers advanced feature of the library. The reader is advised to read, practise
and understand the previous section before reading this.

We will consider second order predicate logic. We chose this example, because the definition
of second-order substitution is non trivial ... and this is a very good example for the power
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of bindlib.

Here is the mathematical definition of terms and formulas, and the corresponding definition
using bindlib:

definition 1 (Syntax of second order logic) We assume a signature

Σ = {(f, 1), (g, 2), (a, 0), . . .}

with various constants and function symbols of various arity. An infinite set of first-order
variables (written x, y, z . . .) and for each natural number n an infinite set of second-order
variables of arity n (written X, Y, Z, . . .).

Terms are defined by

• x is a term if it is a first order variable

• f(t1, . . . , tn) is a term if f is a function symbol of arity n and if t1, . . . , tn are terms.

Formulas are defined by

• X(t1, . . . , tn) is a formula if X is a second order variable of arity n and if t1, . . . , tn are
terms.

• A → B is a formula if A and B are formulas.

• ∀xA is a formula with x bound if A is a formula and x is a first-order variable.

• ∀X A is a formula with X bound if A is a formula and X is a second-order variable.

(* a structure to store the information about a function symbol *)
type symbol = {name : string; arity : int }

(* the type of first order term *)
type term =

Fun of symbol * term array
| TermVar of term variable

(* the type of second order formula *)
type form =
Imply of form * form

| Forall1 of (term, form) binder (* fitst order quantifier *)
| Forall2 of int * (pred, form) binder (* second order quantifier *)

(* the int in the arity *)
| FormVar of pred variable * term array (* a predicate variables and *)

(* its arguments *)

and pred = (term, form) mbinder (* a predicate is a binder ! *)

10



let lam1 x = TermVar(x)

let lam2 n x =
unbox (bind lam1 args(n) in FormVar(^ (^x^), lift_array args^))

Let us review these definitions:

• pred = (term, form) mbinder: this is the type of an object of type form with an
array of bound variables. We use this to represent predicates, that is formula with n
parameters.

• Forall2 of int * (pred, form) binder: for second order quantification, we bind a
variable of arity n. The arity is the first argument of the constructor. For the second
argument, (pred, form) binder, we mean that we bind a “predicate” variable. This
variable is itself a mbinder, this is why it is a “second-order” variable.

• FormVar of pred variable * term array: as usual for any free variable, we have to
store the variable itself of type pred variable. But here, we should also store the
terms which are the arguments of the second-order predicate variable.

• let lam1 x = TermVar(x): we introduce the function to construct first-order binder.
Every time we will want to construct a first-order quantification, we will write

Forall1(^ bind lam1 x in ... ^)

• bind lam1 args(n) in ... : this binds an array of term variable of arity n. The
typing rule of this camlp4 extension is:

Γ, x : ’a array bindbox ` e : ’b bindbox
Γ ` f : ’a variable -> ’a
Γ ` n : int

Γ ` bind f x(n) in e : (’a, ’b) mbinder bindbox

• lift_array : this is a function of type ’a bindbox array -> ’a array binxbox,
which is often used when binding array of variables.

• let lam2 n x =
unbox (bind lam1 args(n) in FormVar(^ (^x^), lift_array args^)): we in-

troduce the function to construct second-order binder. It is a bit complex, but typing
gives very little choice: we have arity : int, and x : pred variable. And we need
an object of type pred. We have:

– x : pred variable and therefore, (^x^) : pred variable bindbox

– args : term bindbox array gives lift_array args : term array bindbox

– all this gives FormVar(^ ... ^) : form bindbox, using the rule given page 5 for
lifted constructor.

– bind lam1 args(arity) in FormVar(^ ... ^) : pred bindbox.

– Finally, unbox (bind lam1 args(arity) in FormVar(^ ... ^)) : pred
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Like for first-order variables, every time we will want to construct a second-order quan-
tification of arity n, we will write Forall2(^ unit n, bind lam2 x(n) in ... ^).

Now, we write the printing function for terms and formulas:

let rec print_term = function
Fun(sy, ta) ->
print_string sy.name;
print_string "(";
for i = 0 to sy.arity - 1 do
print_term ta.(i);
print_string (if i < sy.arity - 1 then "," else ")")

done
| TermVar(var) ->

print_string (name_of var)

let rec print_form lvl = function
Imply(f1, f2) ->
if lvl > 0 then print_string "(";
print_form 1 f1; print_string " => "; print_form lvl f2;
if lvl > 0 then print_string ")";

| Forall1 f ->
match f with bind lam1 t in g ->
print_string "Forall1 ";
print_string (name_of t);
print_string " ";
print_form 1 g

| Forall2 (arity, f) ->
match f with bind (lam2 arity) x in g ->
print_string "Forall2 ";
print_string (name_of x);
print_string " ";
print_form 1 g

| FormVar(var,args) ->
print_string (name_of var);
print_string "(";
let arity = Array.length args in
for i = 0 to arity - 1 do
print_term args.(i);
print_string (if i < arity - 1 then "," else ")")

done

We also write the equality test which is similar:

let rec equal_term t t’ = match t, t’ with
TermVar(x), TermVar(x’) -> x == x’

| Fun(sy,ta), Fun(sy’,ta’) when sy = sy’ ->
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let r = ref true in
for i = 0 to sy.arity - 1 do
r := !r && equal_term ta.(i) ta’.(i)

done;
!r

| _ -> false

let rec equal_form f f’ = match f, f’ with
Imply(f,g), Imply(f’,g’) ->
equal_form f f’ && equal_form g g’

| Forall1(f), Forall1(f’) ->
match f with bind lam1 t in g ->
equal_form g (subst f’ (free_of t))

| Forall2(arity,f), Forall2(arity’,f’) ->
arity = arity’ &&
match f with bind (lam2 arity) x in g ->
equal_form g (subst f’ (free_of x))

| FormVar(x,ta), FormVar(x’,ta’) ->
x == x’ &&
let r = ref true in
for i = 0 to Array.length ta - 1 do
r := !r && equal_term ta.(i) ta’.(i)

done;
!r

| _ -> false

One remark here: we do not use the variables names for comparison (because it is slower
and for another reason that we will see later), but instead we use physical equality on the
free variables we create to substitute to bound variables. It is possible to use structural
equality because a variable is a structure whose first field is a unique identifier. But you
should be aware that one of the field of this structure is an ML closure (the function of type
’a variable -> ’a given when creating the variable).

Now, we give the lifting functions (already mentioned about naming): very often, we have
an object o of type t bindbox that we want to read/match. Therefore, we will use unbox.
But then, we will want to reuse the subterms of o with type t bindbox to continue the
construction of an object of type t with some bound variables. For this, we need this kind of
copying functions:

let rec lift_term = function
TermVar(x) -> bindbox_of x

| Fun(sy,ta) -> Fun(^ (^sy^), lift_array (Array.map lift_term ta) ^)

let rec lift_form = function
Imply(f1,f2) -> Imply(^ lift_form f1, lift_form f2 ^)

| Forall1 f ->
match f with bind lam1 t in g ->
Forall1(^ bindvar t in lift_form g ^)
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| Forall2(arity,f) ->
match f with bind (lam2 arity) x in g ->
Forall2(^ (^arity^), bindvar x in lift_form g ^)

| FormVar(x,args) ->
mbind_apply (bindbox_of x) (lift_array (Array.map lift_term args))

The functions bind_apply : (’a -> ’b) binder bindbox -> ’a bindbox -> ’b bindbox
and mbind_apply (’a -> ’b) mbinder bindbox -> ’a bindbox array -> ’b bindbox
for multiple binder are used to apply to its arguments a variable representing a binder.

Now we define proofs (for natural deduction):

type proof =
Imply_intro of form * (proof,proof) binder

| Imply_elim of proof * proof
| Forall1_intro of (term, proof) binder
| Forall1_elim of proof * term
| Forall2_intro of int * (pred, proof) binder
| Forall2_elim of proof * pred
| Axiom of form * proof variable

let assume f x = Axiom(f,x)

We remark that all introduction rules are binder and the implication introduction rule binds
a proof inside a proof. For the function assume constructing the variables of type proof, we
also store the formula that it “assumes” when we do the introduction of an implication.

Now, we give a simple function to print goals (or sequent), that is a list of named hypotheses,
represented by proof variables, and a conclusion. We need to copy the hypotheses because
they result from a substitution. This is not the case for the conclusion of the sequent which
is passed to print_goal just after the call to unbox.

let print_goal hyps concl =
List.iter (
function

Axiom(f, v) ->
print_string (name_of v); print_string ":=";
print_form 0 (unbox (lift_form f)); print_newline ()

| _ ->
failwith ("not an axiom")) hyps;

print_string " |- "; print_form 0 concl; print_newline ()

Now the main function, that checks if a proof is correct. The first function builds the formula
which is proved by a proof, or raise the exception Bad_proof if the proof is incorrect.

The second function calls the first one and checks if the produced formula is equal to a given
formula.

Moreover, to illustrate the problem of variables names, we print the goal which is obtained
after each rule.

Here is the code that we will explain bellow:
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exception Bad_proof of string

let type_infer p =
let ctxt = empty_context in
let rec fn hyps ctxt p =
let r = match p with
Imply_intro(f,p) ->
match p with bind (assume f) ax for ctxt in p’ ->
Imply(^ lift_form f, fn (ax::hyps) ctxt p’ ^)

| Imply_elim(p1, p2) ->
begin
let f1’ = unbox (fn hyps ctxt p2) in
match unbox (fn hyps ctxt p1) with
Imply(f1,f2) when equal_form f1 f1’ -> lift_form f2

| Imply(f1,f2) ->
print_form 0 f1; print_string "<>"; print_form 0 f1’;
print_newline ();
raise (Bad_proof("Imply"))

| _ ->
raise (Bad_proof("Imply"))

end
| Forall1_intro(p) ->

match p with bind lam1 t for ctxt in p’ ->
Forall1(^ bindvar t in fn hyps ctxt p’^)

| Forall1_elim(p,t) ->
begin
match unbox (fn hyps ctxt p) with
Forall1(f) -> lift_form (subst f t)

| _ -> raise (Bad_proof("Forall1"))
end

| Forall2_intro(arity, f) ->
match f with bind (lam2 arity) x for ctxt in p’ ->
Forall2(^ (^arity^), bindvar x in fn hyps ctxt p’ ^)

| Forall2_elim(p,pred) ->
begin
match unbox (fn hyps ctxt p) with

n Forall2(arity, f) when arity = mbinder_arity pred ->
lift_form (subst f pred)

| _ -> raise (Bad_proof("Forall2"))
end

| Axiom(f,_) ->
lift_form f

in
print_goal (List.map free_of hyps) (unbox r); print_newline ();
r

in
unbox (fn [] ctxt p)
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let type_check p f =
if not (equal_form (type_infer p) f) then raise (Bad_proof "conclusion")

There are two important things to comment in these programs:

1. We care about variable names using a context for the free variables and the lift_form
function for the bound ones as explained before.

2. The second important point is the use of unbox together with the lift_form function
to type-check the elimination rules.

We must use unbox to match the formula coming from the type-checking of the principal
premise of the rule. Then, one sub-formula of the matched formula must be used and we
have to use lift_form for that. Important remark: because of the use of lift_term and
lift_form functions, this algorithm is quadratic (at least), because it calls lift_term
and lift_form which are linear at each elimination rule. As an exercise, the reader
could rewrite the type_infer function, using a stack, to avoid this.

It is in fact a general problem when writing programs using bound variables, we have
often to make copy of objects (to adjust DeBruijn indices, to rename variables, to “relift”
them). And this is important that bindlib allow to easily notice this when using the
“lifting” functions and to allow to avoid them in a lot of cases, bringing a substantial
gain in efficiency.

A Module Bindlib : Bindlib library

A.1 Basic functions

type (-’a, +’b) binder

this is the type of an expression of type ’b with a bound variables of type ’a

type ’a variable

type ’a mvariable = ’a variable array

type of variables and array of variables

type context

context, used to store names to rename free variables

val empty_context : context

val subst : (’a, ’b) binder -> ’a -> ’b

this is the subtitution function: it takes an expression with a bound variable of type
’a and a value for this variable and replace all the occurrences of this variable by this
value

val binder_name : (’a, ’b) binder -> string
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binder name f returns the name of the variable bound in f

val name_of : ’a variable -> string

name of v returns the name of the free variable v

val compare_variables : ’a variable -> ’a variable -> int

a safe comarison for variables

type +’a bindbox

type inhabited by data structures of type ’a with variables under construction

val unbox : ’a bindbox -> ’a

the function to call when the construction of an expression of type ’a is finished.

val bindbox_of : ’a variable -> ’a bindbox

the function to use a variable inside a data structure

val free_of : ’a variable -> ’a

the function to use a variable as free, identical to the composition of unbox and
bindbox of

val unit : ’a -> ’a bindbox

unit allows you to use an expression of type ’a in a larger expression constructed
with free variables

val apply : (’a -> ’b) bindbox -> ’a bindbox -> ’b bindbox

this is the function that allows you to construct expressions by allowing the
application of a function with free variables to an argument with free variables

val dummy_bindbox : ’a bindbox

It is sometimes usefull to have a dummy value, for instance to initialize arrays

If one use dummy bindbox in a data structure, calling unbox will raise the exception
Failure "Invalid use of dummy bindbox"

val is_binder_constant : (’a, ’b) binder -> bool

check if the bound variable occurs or not

val is_binder_closed : (’a, ’b) binder -> bool

check if a binder is a closed term
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A.2 Multiple binders

type (’a, ’b) mbinder

this is the type of an expression of type ’b with several bound variables of type ’a

val mbinder_arity : (’a, ’b) mbinder -> int

mbinder arity f returns the number of variables bound in f

val binder_arity : (’a, ’b) mbinder -> int

val mbinder_names : (’a, ’b) mbinder -> string array

mbinder names f returns the names of the variables bound in f

val binder_names : (’a, ’b) mbinder -> string array

val msubst : (’a, ’b) mbinder -> ’a array -> ’b

this is the subtitution function: it takes an expression with several bound variables of
type ’a and an array of values for these variables and replace all the occurrences by
the given values

val is_mbinder_constant : (’a, ’b) mbinder -> bool

check if one of the bound variables occurs or not. There are no way to tell if a specific
variable bound in a multiple binder occurs or not

val is_mbinder_closed : (’a, ’b) mbinder -> bool

check is the term is a closed term

A.3 Other functions

val is_closed : ’a bindbox -> bool

this function tells you if a ’a bindbox is closed. This means it has no free variables.
This may be useful when optimizing a program

val bind_apply : (’a, ’b) binder bindbox ->
’a bindbox -> ’b bindbox

val mbind_apply :
(’a, ’b) mbinder bindbox ->
’a array bindbox -> ’b bindbox

These functions are usefull when using ”higher order variables”. That is variables that
represent itself binder and therefore that can be applied to arguments

val unit_apply : (’a -> ’b) -> ’a bindbox -> ’b bindbox

This function and the following ones can be written using unit and apply but are
given because they are very often used. Moreover, some of them are optimised

unit apply f a = apply (unit f) a
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val unit_apply2 :
(’a -> ’b -> ’c) ->
’a bindbox -> ’b bindbox -> ’c bindbox

unit apply2 f a b = apply (apply (unit f) a) b

val unit_apply3 :
(’a -> ’b -> ’c -> ’d) ->
’a bindbox ->
’b bindbox -> ’c bindbox -> ’d bindbox

unit apply3 f a b c = apply (apply (apply (unit f) a) b) c

val lift_pair : ’a bindbox -> ’b bindbox -> (’a * ’b) bindbox

lift pair (x,y) = unit apply2 (,) x y

val fixpoint :
((’a, ’b) binder, (’a, ’b) binder) binder
bindbox -> (’a, ’b) binder bindbox

Very advanced feature: binder fixpoint !

The following structures allow you to define function like lift list or lift array for your
own types, if you can provide a map function for your types. These are given for polymorphic
types with one or two parameters
module type Map =

sig

type ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

end

module Lift :

functor (M : Map) -> sig

val f : ’a bindbox M.t -> ’a M.t bindbox

end

module type Map2 =

sig

type (’a, ’b) t

val map : (’a -> ’b) ->
(’c -> ’d) -> (’a, ’c) t -> (’b, ’d) t

end

module Lift2 :

functor (M : Map2) -> sig
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val f : (’a bindbox, ’b bindbox) M.t -> (’a, ’b) M.t bindbox

end

val lift_list : ’a bindbox list -> ’a list bindbox

lift_list =
let module M = struct
type ’a t = ’a list
let map = List.map end

in Lift(M).f

val lift_array : ’a bindbox array -> ’a array bindbox

lift_array =
let module M = struct
type ’a t = ’a array
let map = Array.map end

in Lift(M).f

A.4 Syntactic extension of the language for bindlib

We describe here the syntactic extension provided by pa_bindlib.cmo.

expr ::= ...
| (^ expr ^)
| (^ expr, expr , expr ^)
| [^ ^]
| [^ expr ; expr ^]
| [|^ ^|]
| [|^ expr ; expr ^|]
| constr(^ expr ^)
| constr(^ expr, expr , expr ^)
| {^ field = expr {; field = expr} ^}
| {^ expr with field = expr {; field = expr} ^}
| letvar expr lowercase-ident [( expr )] [as expr] [for lowercase-ident] in expr
| bindvar lowercase-ident [()] in expr
| bind expr lowercase-ident [( expr )] [as expr] [for lowercase-ident] in expr
| match expr with bind expr lowercase-ident [( lowercase-ident )]

[as expr] [for lowercase-ident] in lowercase-ident ->expr
| expr ^^ expr
| expr ^|^ expr

Remarks and comment:

• (^e^) is equivalent to unit e
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• In letvar and bind, the first expr is parser at priority level “simple” and therefore it
should be parenthesised if it is not an identifier.

• in match ... bind, the [as expr] option is not a pattern to hold the name of the bound
variable, but a string you can give to rename the variable.

• e ^^ e’ is equivalent to bind_apply e e’ and it is left associative and parsed at the
priority level of application. This is why it is a syntactic extension and not an infix
operator.

• e ^|^ e’ is equivalent to mbind_apply e e’ and it is left associative and parsed at
the priority level of application.

B Module Nvbindlib : Bindlib library

Author(s): Christophe Raffalli

This libraries provide functions and type to use binder (that is construct that binds a variable
in a data structure)
type (’a, ’b) binder = ’a -> ’b

this is the type of an expression of type ’b with a bound variables of type ’a

type ’a variable

type ’a var = ’a variable

type ’a mvariable = ’a variable array

val subst : (’a, ’b) binder -> ’a -> ’b

this is the subtitution function: it takes an expression with a bound variable of type ’a
and a value for this variable and replace all the occurrences of this variable by this
value

type ’a bindbox

the type of an object of type ’a being constructed : this object may have free variables

val bindbox_of : ’a variable -> ’a bindbox

the function to call when the construction of an expression of type ’a is finished. This
two functions are identical, and can also be used as a prefixoperator !!

val free_of : ’a variable -> ’a

val unbox : ’a bindbox -> ’a

val unlift : ’a bindbox -> ’a

val (!!) : ’a bindbox -> ’a

val unit : ’a -> ’a bindbox

unit allows you to use an expression of type ’a in a larger expression begin constructed
with free variables
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val lift : ’a -> ’a bindbox

val (!^) : ’a -> ’a bindbox

val bind :
(’a variable -> ’a) ->
(’a bindbox -> ’b bindbox) ->
(’a, ’b) binder bindbox

this is THE function constructing binder. If takes an expression of type ’a bindbox →
’b bindbox in general written (fun x → expr) (we say that x is a free variable of expr).
And it constructs the expression where x is bound. The first argument is a function
build a free variables. The second argument is the name of the variable

val new_var : (’a variable -> ’a) -> ’a variable

val bind_var : ’a variable ->
’b bindbox -> (’a, ’b) binder bindbox

val apply : (’a -> ’b) bindbox -> ’a bindbox -> ’b bindbox

this is THE function that allows you to construct expressions by allowing the
application of a function with free variables to an argument with free variables

val dummy_bindbox : ’a bindbox

type (’a, ’b) mbinder

this is the type of an expression of type ’b with ”n” bound variables of type ’a

val mbinder_arity : (’a, ’b) mbinder -> int

mbinder arity f return the number of variables bound by

val msubst : (’a, ’b) mbinder -> ’a array -> ’b

this is the subtitution function: it takes an expression with a bound variable of type ’a
and a value for this variable and replace all the occurrences of this variable by this
value

this is THE function constructing mbinder. If takes an expression of type ’a bindbox array
→ ’b bindbox in general written (fun x → expr) (we say that x is vector of free variables of
expr). And it constructs the expression where x’s are bound. The first argument is a function
to build a free variables. The second argument are the names of the variable
val mbind :
(’a variable -> ’a) ->
int ->
(’a bindbox array -> ’b bindbox) ->
(’a, ’b) mbinder bindbox

val new_mvar : (’a variable -> ’a) -> int -> ’a mvariable

val bind_mvar : ’a mvariable ->
’b bindbox -> (’a, ’b) mbinder bindbox

val is_binder_constant : (’a, ’b) binder -> bool
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check if the bound variable occurs or not

val is_binder_closed : (’a, ’b) binder -> bool

check if a binder is a closed term

val is_mbinder_constant : (’a, ’b) mbinder -> bool

check if at least one of the bound variables occurs

val is_mbinder_closed : (’a, ’b) mbinder -> bool

check if a binder is a closed term

val bind_apply : (’a, ’b) binder bindbox ->
’a bindbox -> ’b bindbox

Used in some rare cases !

val mbind_apply :
(’a, ’b) mbinder bindbox ->
’a array bindbox -> ’b bindbox

val fixpoint :
((’a, ’b) binder, (’a, ’b) binder) binder
bindbox -> (’a, ’b) binder bindbox

val unit_apply : (’a -> ’b) -> ’a bindbox -> ’b bindbox

The following function can be written using unit and apply but are given because they
are very usefull. Moreover, some of them are optimised

val unit_apply2 :
(’a -> ’b -> ’c) ->
’a bindbox -> ’b bindbox -> ’c bindbox

val unit_apply3 :
(’a -> ’b -> ’c -> ’d) ->
’a bindbox ->
’b bindbox -> ’c bindbox -> ’d bindbox

val lift_pair : ’a bindbox -> ’b bindbox -> (’a * ’b) bindbox

val lift_list : ’a bindbox list -> ’a list bindbox

val (^::) : ’a bindbox ->
’a list bindbox -> ’a list bindbox

val lift_array : ’a bindbox array -> ’a array bindbox

val is_closed : ’a bindbox -> bool

this function tells you if a ’a bindbox is closed. This may be useful when optimizing a
program

the following structures allow you to define function like lift pair or lift list for your own types,
if you can provide a ”map” function for your types. These are given for polymorphic types
with one or two arguments
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module type Map =

sig

type ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

end

module Lift :

functor (M : Map) -> sig

val f : ’a Nvbindlib.bindbox M.t -> ’a M.t Nvbindlib.bindbox

end

module type Map2 =

sig

type (’a, ’b) t

val map : (’a -> ’b) ->
(’c -> ’d) -> (’a, ’c) t -> (’b, ’d) t

end

module Lift2 :

functor (M : Map2) -> sig

val f :
(’a Nvbindlib.bindbox, ’b Nvbindlib.bindbox) M.t ->
(’a, ’b) M.t Nvbindlib.bindbox

end

type environment

type varpos

type ’a env_term = varpos -> environment -> ’a

val special_apply :
unit bindbox ->
’a bindbox -> unit bindbox * ’a env_term

val special_start : unit bindbox

val special_end : unit bindbox -> ’a env_term -> ’a bindbox

B.1 Syntactic extension of the language for nvbindlib

The syntactic extension provided by pa_nvbindlib.cmo are the same as for bindlib, except
that the [as expr] and [for lowercase-ident] options dealing with variables are not allowed.
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C Semantics

Here is an equational specification of bindlib. To give the semantics, we will use the following
convention:

• variables are structure of type

’a variable = {id : int; name : string; f : ’a variable -> ’a}

that are produced only by a function

new_var : (’a variable -> ’a) -> string -> ’a variable

which always generates fresh id.

• We will use values written unboxe where e is an association list associating to a value
of type ’a variable a value of type ’a.

In fact e has type env = ∃’a ((’a variable * ’a) list).

This is not a valid ML type, but it could be coded in ML. However, we will use a search
function assoc (searching for variables) which should have type

’a variable -> env -> ’a

which is not possible in ML. However, in our case, this is type safe only because the same
value can not have type ’a variable and ’b variable if ’a 6= ’b. This is enforced
when the type ’a variable is abstract.

• Value of type context will be set of strings. We consider that we have a function
fresh : string -> context -> string * context such that fresh s c = s′, c′ where
s’ is not member of c, has the same prefix that s (only the numerical suffix of s is
changed) and c′ is the addition of s′ to the set c.

• In the letvar construct, when the as keyword is ommited, the name of the identifier
is used as a string for the variable name (or as a string array with a constant value
for multiple binding).

• In the semantics, we also use map, the standard map function on array (Array.map), and
fold_map : (’a -> ’b -> ’c * ’b) -> ’a array -> ’b -> ’c array * ’b which
definition follows

let fold_map f tbl acc =
let acc = ref acc in
let fn x =
let x’, acc’ = f x !acc in
acc := acc’;
x’

in
let tbl’ = Array.map fn tbl in
tbl’, !acc
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unbox = unbox[]
unboxe(unit v) = v

unboxe(apply f v) = (unboxe f)(unboxe v)
unboxe(bind_apply f v) = (unboxe f)(unboxe v)

letvar f id as s in p = let id = new_var f s in p
letvar f id as s for ctxt in p =

let s′, ctxt = fresh s ctxt in let id = new var f s in p
name_of v = v.name

subst(unboxe(bindvar v inf))a = unbox(v,a)::ef

unboxe(bindbox_of v) = try assoc v e with Not_found -> v.f v
unboxe(^a1, . . . , an^) = (unboxe a1, . . . , unboxe an)
unboxe[^a1; . . . ; an^] = [unboxe a1; . . . ; unboxe an]

unboxe[|^a1; . . . ; an^|] = [|unboxe a1; . . . ; unboxe an|]
unboxe(Cstr(^a1, . . . , an^)) = Cstr(unboxe a1, . . . , unboxe an)
letvar f ids(n) as s in p = let ids = map (new_var f) s in p

letvar f ids(n) as s for ctxt in p =
let s′, ctxt = fold map fresh s ctxt in let ids = map (new var f) s in p

Figure 1: Equational semantics for bindlib
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