
Documentation of the static analysis tool ValViewer

CEA, LIST
Software Reliability Laboratory (LSL)

Contact: http://www.frama-c.cea.fr

April 11, 2008

2

Chapter 1

Introduction

ValViewer is a static analysis tool which targets C programs. ValViewer displays a nor-
malized version of the analyzed code source. The user can then interactively select an
expression in the code and observe an over-approximation of the set of the possible values
taken by this expression at run-time. ValViewer also provides synthetic information on
the behavior of analyzed functions: inputs, outputs, and alarms. ValViewer works best on
embedded code or embedded-like code without dynamic allocation nor multithreading.

Here is a simple C example:

1 int y, z=1;
2 int f(int x) {
3 y = x + 1;
4 return y;
5 }
6
7 void main(void) {
8 for (y=0; y<2+2; y++)
9 z=f(y);

10 }

The tool is able to guarantee that at each passage through the return statement of
function f, the global variables y and z each contain either 1 ou 3. At the end of function
main, the tool indicates that y necessarily contains 4, and the the value of z is again 1 or 3.

When the tool indicates that the value of y is 1 or 3 at the end of function f, it implicitely
computes the union of all the values that can be stored in y at each passage through this
program point throughout an execution.

In an actual execution of this deterministic program, there is only one passage though
the end of function main, and therefore only one value for z at this point. The answer given
by ValViewer is approximated but correct (the actual value, 3, is among the proposed set).

The analyzed application can contain run-time errors (divisions by zero, invalid pointer
access,. . .), as in the case of the following program:

3

4 CHAPTER 1. INTRODUCTION

1 int i,t[10];
2
3 void main(void) {
4 for (i=0; i<=8+2; i++)
5 t[i]=i;
6 }

ValViewer emits a warning about an out-of-bound access at line 5:

rte.c:5: Warning: accessing out of bounds index. assert ((0 <= i) && (i < 10));

There is in fact an out-of-bounds access at this line in the program. It can also be the
case that, because of the approximations made throughout its computations, ValViewer
emits warnings for constructs that do not cause any run-time errors. These are called “false
alarms”. Conversely, it should be noted that the fact that ValViewer computes correct,
over-approximated sets of possible values prevents it to remain silent on a program that
contains a run-time error.

Chapter 2

Limitations and specificities of
ValViewer

2.1 Loops
ValViewer’s analysis of a source program always take a finite time. The fact that the source
code contains loops, and that some of these loops do not terminate, can never induce the
tool to loop forever itself1. In order to obtain this property, the analysis of a loop may be
the place of an approximation.

Let us assume, in the following lines, that the function c is unknown:

1 n=100;
2 i=0;
3 y=0;
4 do {
5 i++;
6 if (c(i))
7 y = 2*i;
8 } while (i<n);

The tool could provide the best possible solution if the user instructed it explicitely to
study step by step each of the hundred loop iterations. Without any such instruction from
the user, ValViewer analyses the body of the loop much less than one hundred times. It is
able to provide the approximated, but correct, information that after the loop, y contains an
even number between 0 and 256.

Section 3.6 introduces the different ways in which the user can influence ValViewer’s
stategy with respect to the analysis of loops.

1There are two excceptions to this rule, which are documented in the reference manual. ValViewer can
loop if it is launched on a program with non-natural loops, or if the most precise modelizations of malloc
are used

5

6 CHAPTER 2. LIMITATIONS AND SPECIFICITIES OF VALVIEWER

2.2 Functions
Without special instruction from the user, function calls are handled as if the body of the
function had been expansed at the call site. In the following example, the body of f is
analyzed again at each analysis of the body of the loop. The result of the analysis is as
precise as the result obtained for the example in section 2.1.

1 int n, y;
2 void f(int x) { y = x; }
3
4 void main_1(void) {
5 int i;
6
7 n=100;
8 i=0;
9 y=0;

10 do {
11 i++;
12 if (c(i))
13 f(2*i);
14 } while (i<n);
15
16 }

Recursive functions are not allowed, but they could be in a later version of ValViewer.

2.3 Analyzing a partial or a complete application
The default behavior of ValViewer allows to analyze complete applications, that is, appli-
cations for which the source code is entirely available. In practice, it is sometimes desirable
to limit oneself to critical subparts of the application, by using other entry points than the
actual one (the main function). Besides, the code of some functions called from the ap-
plication may not be available (library functions for instance). The tool can be used in all
these modes.

The options for specifying the entry point of the analysis are detailed in the reference
manual, section 3.5.

2.3.1 Entry point of a complete application
When the source code for the analysed application is entirely available, the only additional
information expected by ValViewer is the entry point that it should start from. Specifying
the wrong entry point can lead to incorrect results: let us assume that the actual entry point

2.3. ANALYZING A PARTIAL OR A COMPLETE APPLICATION 7

for the example of section 2.2 is not the function main_1 but the following main_main
function:

17 void main_main(void) {
18 f(15);
19 main_1();
20 }

If the wrong entry point main_1 is indicated, the tool will provide the same answer for
variable y at the end of function f as in sections 2.1 and 2.2: the set of even numbers
between 0 and 256. This set is not the expected answer if the actual entry point is the
function main_main, because it does not contain the value 15.

The command-line option for specifying the entry point is described in section 3.5.1.

2.3.2 Entry point of an incomplete application

It is possible to analyse an application without starting from its actual entry point. This
can be made necessary because the actual entry point is not available, for instance if the
analysis is concerned with a library. It can also be a deliberate choice as part of a modular
verification strategy.

In this case, the option described at section 3.5.2 should be used to provide ValViewer
with an entry point to start the analysis from. In this mode, ValViewer does not assume that
the global variables have kept their initial values (except for the variables with the const
attribute).

2.3.3 Library functions

Another category of functions whose code may be missing is composed of the functions
called from the application, such as the operating system primitives or the external libraries
used by the application. These functions are called “library functions”.

The behavior of each library function can be specified through annotations (see chapter
4). The specification of a library function can in particular be provided in terms of modified
variables, and of data dependencies between these variables and the inputs of the function
(section 4.2).

2.3.4 Applications relying on software interrupts

The current version of ValViewer is not able to take into account interrupts (auxiliary func-
tion that can be executed at any time during the main computation). As things stand, the
tool may give answers that do not reflect reality if interrupts play a role in the behavior of
the analyzed application. Interrupts will be taken into account in a future version.

8 CHAPTER 2. LIMITATIONS AND SPECIFICITIES OF VALVIEWER

2.3.5 Consequences of the choice between the complete application
mode and the partial application mode

This section shows a small example to illustrate the pitfalls that should be considered when
using ValViewer with the incomplete part of an application. This example is simplified but
quite typical. This is the pattern followed by the complete application:

1 int ok1;
2
3 void init1(void) {
4 ...
5 if (error condition)
6 error_handling1();
7 else
8 ok1 = 1;
9 }

10
11 void init2(void) {
12 if (ok1) {
13 ...
14 }
15 }
16
17 void main(void) {
18 init1();
19 init2();
20 ...
21 }

If init2 is analyzed as the entry point of a complete application, or if the function
init1 is accidentally omitted, then at the time of analyzing init2, the tool will have no
reason to believe that the global variable ok1 has not kept its initial value 0. The analysis
of init2 will consist in determining that the value of the if condition is always false, and
to ignore all the code that follows.

However, as long as the user is aware of these pitfalls, the analysis of incomplete
sources can provide useful results. In this example, if the user wishes to analyze the func-
tion init2, he or she should use the option described in section 3.5.2.

It is also possible to use annotations to describe the state in which the analysis should
be started as a precondition for the function used as entry point. The syntax and usage
of preconditions is described in section 4.1. The user should pay attention to the intrinsic
limitations in the way ValViewer interprets these properties (section 4.1.2).

Despite these limitations, when the specifications the user wishes to provide are simple
enough to be interpreted by ValViewer, it becomes possible and useful to divide the appli-
cation into several parts, and to study each part separately (by taking each part as an entry

2.4. CONVENTIONS NOT SPECIFIED BY THE ISO STANDARD 9

point, with the appropriate preconditions). The division of the application into parts may
follow the phases in the application’s behavior (initialization followed by the permanent
phase) or divide it into elementary sub-pieces, the same way unit tests do.

2.4 Conventions not specified by the ISO standard
ValViewer can provide useful information even for low-level programs that rely on non-
portable C construct and that depend on the size of the word and the endianness of the
target architecture.

2.4.1 The C standard and its practice
There exists constructs of the C language which the ISO standard does not specify, but
which are compiled in the same way by almost every compiler for almost every archi-
tecture. For some of these constructs, the behavior of the tool is to assume a reasonable
compiler and target architecture. This way, it is possible to obtain more information about
the behavior of the program than would be possible using only what is strictly guaranteed
by the standard.

This stance is paradoxical for an analysis tool whose purpose is to compute only correct
approximations of program behaviors. Then notion of “correctness” is necessarily relative
to a definition of the semantics of the analyzed language. And, for the C language, the ISO
standard is the only available definition.

However, an experimented C programmer has a certain mental model of the working
habits of the compiler. This model has been acquired by experience, common sense, knowl-
edge of the underlying architectural constraints, and sometimes the perusal of the generated
assembly code. Finally, the Application Binary Interface may constrain the compiler into
using representations that are not mandated by the C standard (and which the programmer
should not, a priori, have counted on). Since most compilers make equivalent choices, this
model does not vary much from one programmer to the other. The set of practices admitted
by the majority of C programmers compose a kind of informal, and unwritten, standard.

For each C language construct that is not completely specified by the standard, there
usually exists an alternative, “portable” version. The portable version could be consid-
ered safer if the programmer did not know exactly how the non-portable version will be
translated by his, or her, compiler. But the portable version may produce a code which
is significantly slower and/or bigger. In practice, the constraints imposed on embedded
software often lead to choosing the non-portable version. This is why, as often as possible,
ValViewer uses the same standard as the one used by programmers, the unwritten one. It
is the experience gained on actual industrial software, during the development of early ver-
sions of ValViewer as well as during the development of other tools, that led to this choice.

The hypotheses discussed here have to do with the conversions between integers and

10 CHAPTER 2. LIMITATIONS AND SPECIFICITIES OF VALVIEWER

pointers, pointer arithmetic, the representation of enum types and the relations between
the addresses of the fields of a same struct. As a very concrete example, ValViewer
assumes two-complement arithmetic, which the standard does not guarantee, and whose
consequences can be seen when converting between signed and unsigned types.

2.4.2 Detecting compilation parameters
An autodetection program is provided in order to check the hypotheses mentioned in sec-
tion 2.4.1, as well as to detect the endianness of the target and size of each C type. It
comes under the form of a C program of a few lines, which should ideally be compiled
with the same compiler as the one intended to compile the analyzed application. If this
is not possible, ValViewer can also be parametrized manually with the characteristics of
the target architecture. The default configuration is for a IA32 architecture (little-endian,
32 bits) with the alignment conventions of gcc. A few other common sets of parameters
can be obtained through command-line options. If none of the available sets of parameters
are satisfactory, it is possible to obtain other settings (the contact information can be found
starting from the URL on the first page of this document).

Often, the ISO standard does not provide enough guarantees to ensure that the behav-
iors of the compiler during the compilation of the autodetection program and during the
compilation of the application are the same. It is the additional constraint that the compiler
should conform to a fixed ABI that ensures the reproducibility of compilation choices.

2.5 Memory model – Bases separation
This section introduces the abstract representation of the memory ValViewer relies on. It
is necessary to have at least a superficial idea of this representation in order to interact with
it.

2.5.1 Base address
The memory model used by ValViewer relies on the classical notion of “base address”.
Each variable, be it local or global, defines one and only one base address. For instance,
the definitions

1 int x;
2 int t[12][12][12];
3 int *y;

define three base addresses, for verb|x|, t, and y respectively. The sub-arrays composing
t share the same base address. The variable y defines a base address that corresponds to
a memory location expected to contain an address. On the other hand, there is no base
address for *y, even though dynamically, at a given time of the execution, it is possible to
refer to the base address corresponding to the memory location pointed to by y.

2.5. MEMORY MODEL – BASES SEPARATION 11

2.5.2 Address

An address is represented as an offset (which is an integer) with respect to a base address.
For instance, the addresses of the subarrays of the array t defined above are expressed as
various offsets with respect to the same base address.

2.5.3 Bases separation

The strongest hypothesis that the tool relies on is about the representation of memory and
can be expressed in this way: It is possible to pass from one address to another through
the addition of an offset, if and only if the two addresses share the same base address.

This hypothesis is not true in the C language itself : addresses are represented with
a finite number of bits, 32 for instance, and it is always possible to compute an offset
to go from on address to a second one by considering them as integers and subtracting
the first one from the second one. ValViewer generates all the alarms that ensure, if they
are checked, that the analyzed code fits in this hypothesis. On the following example,
ValViewer generates a proof obligation that means that “the comparison on line 8 is safe
only if p is a valid address or if the base address of p is the same as that of &x”.

1 int x, y;
2 int *p = &y;
3
4 void main(int c) {
5 if (c)
6 x = 2;
7 else {
8 while (p != &x) p++;
9 *p = 3;

10 }
11 }

It is mandatory to check this proof obligation. When analyzing this example, ValViewer
infers that the loop never terminates (because p remains an offset version of the address
of y and can never be equal to the address of x). It concludes that the only possible value
for x at the end of function main is 2, but this answer is provided proviso quod the proof
obligation is verified through other means. Some actual executions of this example could
lead to a state where x contains 3 at the end of main: only the proof obligation generated
by ValViewer and verified by the user allows to eliminate these executions.

In practice, the hypothesis of base separation is unavoidable in order to analyze ef-
ficiently actual programs. For the programs that respect this hypothesis, the user should
simply verify the generated proof obligations to ensure the correctness of the analysis. For

12 CHAPTER 2. LIMITATIONS AND SPECIFICITIES OF VALVIEWER

the programs that voluntarily break this hypothesis, ValViewer produces proofs obligations
that are impossible to lift: this kind of program can not be analyzed with ValViewer.

Here is an example of code that voluntarily breaks the base separation hypothesis.
Below is the same function written in the way it should have been in order to be analyzable
with ValViewer.

1 int x,y,z,t,u;
2
3 void init_non_analyzable(void)
4 {
5 int *p;
6 // initialize variables with 52
7 for (p = &x; p <= &u; p++)
8 *p = 52;
9 }

10
11 void init_analyzable(void)
12 {
13 x = y = z = t = u = 52;
14 }

Chapter 3

Reference Manual

3.1 Command line
The parameters that determine ValViewer’s behavior can be set through the command line.

The command to use to launch the tool is:

frama-c-gui <options> <files>

The options that are understood by ValViewer are described in this chapter. The files
are the C files containing the source code to analyze.

The executable can be named frama-c-gui (or frama-c-gui.exe for Windows) if it
is the version including the graphical user interface, or frama-c (or frama-c.exe) if it is
the “batch” version. In both cases the use of options is identical.

3.1.1 Analyzed files and preprocessing
The analyzed files should be written in the C language. The files that do not use the .i
extension are automatically preprocessed. The preprocessing command used by default is:

gcc -C -E -I.

It is possible that the files that do not use the .c extension fail to pass this stage. It is
notably the case with gcc, to which the option -x c should be passed in order to analyze
C files that do not have a .c extension. It is also possible to use another preprocessor.

The option -cpp-command <cmd> sets the preprocessing command to use. If the pat-
terns %1 and %2 do not appear in the text of the command, the preprocessor is invoked in
the following way:

<cmd> -o <outputfile> <inputfile>

In the cases where it is not possible to invoke the preprocessor with this syntax, it is
possible to use the patterns %1 and %2 in the command’s text as placeholders for the input
file (respectively, the output file). Here are some examples of use of this option:

13

14 CHAPTER 3. REFERENCE MANUAL

frama-c-gui -val -cpp-command ’gcc -C -E -I. -x c’ fic1.src fic2.i
frama-c-gui -val -cpp-command ’gcc -C -E -I. -o %2 %1’ fic1.c fic2.i
frama-c-gui -val -cpp-command ’copy %1 %2’ fic1.c fic2.i
frama-c-gui -val -cpp-command ’cat %1 > %2’ fic1.c fic2.i

3.1.2 Saving the result of an analysis
The option -save s saves the state of the analyzer, after the analysis has completed, in a
file named s.

The option -load s lets the state saved in file s be loaded back into memory for visu-
alization.

Example :

frama-c -val -deps -out -save result fic1.c fic2.c
frama-c-gui -load result

3.2 Inputs, outputs and dependencies
ValViewer can compute and display the inputs (adresses of locations read from), outputs
(adresses of locations written to), and the dependencies between outputs and inputs, for
each function. The options to use are -out for the display of locations written to by each
function and -deps for the functional dependencies between outputs and inputs.

The inputs, outputs and dependencies computed are as of now incorrect if the option
-mem-exec is used (section 3.5.3).

3.2.1 Dependencies
An example of dependencies as obtained with the option -deps is as follows:
y FROM x; z; (and default:false)

This clause means that in this example, the variable y may have changed at the end of
the function, and that the variables x and z are used in order to compute the new value of
y. The text (and default:false) means that y may not have kept its previous value,
whereas (and default:true) would mean that y may have been modified, and that if it
was, then its new value depends only on x and z.

The dependencies computed by -deps express relations between the values of modified
variables when the function terminates and the values the input variables had when entering
the function. This is illustrated in the following example:

1 int b,c,d,e;
2
3 void loop_branch(int a)
4 {

3.2. INPUTS, OUTPUTS AND DEPENDENCIES 15

5 if (a)
6 b = c;
7 else
8 while (1) d = e;
9 }

The dependencies of function loop_branch are b FROM c; (and default:false),
which means that when the function terminates, the variable b has been modified and its
new value depends on c. The variables d and e do not appear in the dependencies of
loop_branch because they are only used in branches that do not terminate. A function for
which the analyzer is able to infer that it does not terminate has empty dependencies.

The set of variables that appear on the right-hand side of the dependencies of a function
are called the “functional inputs” of this function. In the example below, the dependency
of double_assign is a FROM c;. The variable b is not a functional input because the final
value of a depends only on c.

1 int a, b, c;
2
3 void double_assign(void)
4 {
5 a = b;
6 a = c;
7 }

3.2.2 Imperative inputs

The imperative inputs of a function are the locations that may be read during the execution
of this function. The analyzer computes an over-approximation of the set of these loca-
tions with the option -input. For the function double_assign of the previous section,
ValViewer gives b; c; as imperative inputs, which is the exact answer.

A location is accounted for in the imperative inputs even if it is read only in a branch
that does not terminate. When asked to compute the imperative inputs of the function
loop_branch of the previous section, ValViewer answers c; e;, which is again the exact
answer.

3.2.3 Imperative outputs

The imperative outputs of a function are the locations that may be written to during the ex-
ecution of this function. The analyzer computes an over-approximation of this set with the
option -out. For the function loop_branch from above, ValViewer gives the imperative
outputs b; d;, which is the exact answer.

16 CHAPTER 3. REFERENCE MANUAL

3.2.4 Operational inputs
The name “operational inputs of a function” is currently given to the locations that have
been read before having been written to in the cases where the function terminates. This
notion may change in future versions.

As they stand, the operational inputs can be used in particular to decide which variables
should be initialized at least in order to be able to execute the function, if it is known by
other means that the execution terminates on the input values that are provided. An over-
approximation of the operational inputs is computed with the option -inout.

1 int b, c, d, e, *p;
2
3 void op(int a)
4 {
5 a = *p;
6 a = b;
7 if (a)
8 b = c;
9 else

10 while (1) d = e;
11 }

This example, when analyzed with the options -inout -lib-entry op, is found to
have the operational inputs b; c; p; star_p; for function op. The variable p is among
the operational inputs, although it is not a functional input, because it is read (in order to be
dereferenced) without having been previously overwritten. The variable a is not among the
operational inputs because its value has been overwritten before being read. This means
that an actual execution of the function op requires to initialize p (which has an influence
on the execution by causing, or not, an an illicit memory access), whereas on the other
hand the analyzer guarantees that it is not necessary to initialize a.

3.3 Values
The option -val activates the value analysis, and causes the values obtained for the vari-
ables at the end of each analyzed function to be displayed on the standard output.

Currently, all other functionalities provided by ValViewer rely on the computations
made by the value analysis. The use of an option that relies on the results of the value
analysis automatically causes the computations to be made, without it being necessary to
provide the -val option on the command-line.

3.3.1 Value domains
When ValViewer receives a query in one way or another concerning the value of a variable
x at a given program point, it answers it by providing an over-approximation of the set of

3.3. VALUES 17

values possibly taken by x at this point for all possible executions. This set can take one of
the following shapes:

• a set of integers, represented as:

. an enumeration, {v1; . . . vn;},

. an interval, [m..M], that represents all the integers comprised between m and
M. If -- appears as the lower bound m (resp. the upper bound M), it means that
the lower bound (resp upper bound) is −∞ (resp. +∞),

. an interval with periodicity information, [m..M],r%p, that represents the set
of values comprised between m and M that are equal to r modulo p (in other
words, whose remainder in the Euclidean division by p is equal to r) ;

• a floating-point number or an interval of floating-point numbers:

. f for the non-zero floating-point number f (the floating-point number +0.0 has
the same representation as the integer 0 and is identified with it),

. [fm .. fM] for the interval from fm to fM inclusive ;

• a set of adresses denoted by {{a1; . . . an;}}, each ai is of the form:

. &x+D, where &x is the base address corresponding to the C variable x, and D
is in the domain of integer values and represents the possible offsets expressed
in bytes with respect to the base address &x,

. NULL+D, which is another notation for the set of integers D ;

• garbled mix o f &{x1; . . . xn;}, denoting an unknown value that was built from
applying arithmetic operations to the base addresses of variables x1 and x2 and to
integers. This notation represents the closure by arithmetic operations of the sets of
addresses &x1 +[--..--], &xn +[--..--], NULL+[--..--].

• ANY T HING, that represents a completely unknown address.

Modern compilation platforms for the C language unify integer values and absolute
addresses: there is not difference between the encoding of the integer 256 and that of
the address (char*)0x00000100. Therefore, ValViewer does not make any difference
between these two values either.

In floating-point computations, ValViewer considers that obtaining Nan, +infinity,
or -infinity is an unwanted error. If it seems to it that these results can be produced
by a given floating-point operation, it emits an alarm that excludes these possibilities, and
continues that analysis with an interval representing the result obtained if excluding these
possibilities. This interval, like every other results, may be over-approximated. Similarly,
an alarm may be emitted for the use as a floating-point number of a value that does not
ostensibly represent a floating-point number. This situation can happen for instance if a

18 CHAPTER 3. REFERENCE MANUAL

union type with both an int field and a float field is used, or in the case of a conversion
from int* to float*. The alarm emitted excludes the possibility of the bit sequence used
as a floating-point number representing Nan, an infinite, or an address.

Warning: the offsets with respect to the base addresses are expressed in bytes,
regardless of the type of the C variable that is being considered.

Examples of value domains:

• [1..256] represents the set of integers comprised between 1 and 256, each of which
can also be interpreted as an absolute address between 0x1 and 0x100.

• [0..256],0%2 represents the set of even integers comprised between 0 and 256.
This set is also the set of the addresses of the first 129 aligned 16-bit words in mem-
ory.

• [1..255],1%2 represents the odd integers comprised between 1 and 255.

• [--..--] represents the set of all (possibly negative) integers.

• 3. represents the floating-point number 3.0.

• [-3. .. 9.] represents the interval of floating-point values comprised between
-3.0 and 9.0.

• {{ &x + { 0; } ; }} represents the address of variables x.

• {{ &x + { 0; 1; } ; }} represents the address of one of the first two bytes of
variable x – assuming x is of a type of size at least 2 bytes. Otherwise, this notation
represents a set containing the address of x and an invalid address.

• {{ &x + { 0; } ; &y + { 0; } ; }} represents the addresses of x and y.

• {{ &t + [0..256],0%4 ; }}, in an application where t is declared as an array of
32-bit integers, represents the addresses of locations t[0], t[1], . . . , t[64].

• {{ &t + [0..256] ; }} represents the same values as the expression (char*)t+i
where the variable i has an integer value comprised between 0 and 256.

• {{ &t + [--..--] ; }} represents all the address obtained by shifting t, includ-
ing misaligned and invalid ones.

3.3.2 Origins of approximations
The values that are the result of heavy approximations contain information on the origin of
said approximations.

The notation V (origin: O) indicates that the computations of the value V required
heavy approximations. The text provided instead of O indicates the location and the cause
of some of these approximations. An origin O can be one of the following:

3.3. VALUES 19

Misaligned read

The origin Misaligned L indicates the set L of the lines of the application where mis-
aligned reads prevented the computation to be precise. A misaligned read is a memory
read-access where the bits read were not previously written as a single write that modified
the whole set of bits exactly. An example of a program leading to a misaligned read is the
following:

1 int x,y;
2 int *t[2] = { &x, &y };
3
4 int main(void)
5 {
6 return 1 + (int) * (int*) ((int) t + 2);
7 }

The value returned by the function main is
{{ garbled mix of &{ x; y; } (origin: Misaligned { misa.c:6; }) }}.
Note that this result is obtained with the analyzer configured for a 32-bit architecture, and
that the read memory access is not an out-of-bound access. If it was, it would cause an
alarm to be emitted. The read access remains within the bounds of array t, but the 32-bit
word read is made of two bytes from the first cell, and two bytes from the second cell of t.

Call to an unknown function

The origin Library function L is used for the result of recursive functions or calls to
function pointers whose value is not known precisely.

Fusion of values with different alignments

The notation Merge L indicates a set L of lines of the analyzed code where fusions of
memory states containing values with incompatible alignments take place. In the example
below, the memory states from the then branch and from the else branch contain in base
t 32-bit adresses with incompatible alignments.

1 int x,y;
2 char t[8];
3
4 int main(int c)
5 {
6 if (c)
7 * (int**) t = &x;
8 else
9 * (int**) (t+2) = &y;

10 x = t[2];

20 CHAPTER 3. REFERENCE MANUAL

11 return x;
12 }

The value returned by function main is
{{ garbled mix of &{ x; y; } (origin: Merge { merge.c:9; }) }}.

Padding in structures

This origin indicates that the analyzed code may access the padding bits in a structure that
is a local variable or a function parameter.

Arithmetic operation

Arithmetic L indicates the set L of lines where arithmetic operations take place without
the analyzer being able to represent the result precisely.

1 int x,y;
2 int f(void)
3 {
4 return (int) &x + (int) &y;
5 }

In this example, the return value for f is
{{ garbled mix of &{ x; y; } (origin: Arithmetic { ari.c:4; }) }}.

3.4 Proof obligations

The correctness of results relies on the verification of all the proof obligations generated
during the analysis. In the current version of ValViewer, these proof obligations are dis-
played as messages that start with Warning:... and indicate the nature and the origin of
the obligation. It is also possible to obtain a version of the source code annotated with the
proofs obligations.

For instance, when dividing by an expression that ValViewer is not able to guarantee
to be different from zero, a proof obligation is emitted. This obligation expresses that the
divisor is different from zero at this point of the code. Proof obligations can similarly be
emitted for memory accesses, and for pointer comparisons which might break the hypothe-
ses the memory model relies on.

Note: while the logical formulae emitted by ValViewer use ACSL’s syntax, some
explicit coercion operations may be missing from these formulae to make them ex-
press correctly in ACSL the condition that ensures the absence of error. This bug will
be fixed in a later version.

3.4. PROOF OBLIGATIONS 21

3.4.1 Parameterizing the modelization of the C language

When ValViewer’s user has a priori knowledge concerning the behavior of the analyzed
code, this knowledge can sometimes be put to use to adjust the modelization to the ana-
lyzed code, and improve the results. Currently, only two such general properties about the
analyzed code can be translated into modelization parameters:

• valid absolute addresses in memory, and

• the absence of arithmetic overflow during the program’s computations.

Generally speaking, if these options are activated for the analysis of programs that do
not respect the corresponding restrictions, ValViewer will produce incorrect results with-
out emitting any warning. This kind of option should therefore be used carefully.

Valid absolute addresses in memory

By default, ValViewer assumes that the absolute addresses in memory are all invalid. This
assumption can be too restrictive, because in some cases there exist a limited number of
absolute addresses which are intended to be accessed by the analyzed program, for instance
in order to communicate with hardware.

The option -absolute-valid-range m-M specifies that the only valid absolute ad-
dresses (for reading or writing) are those comprised between m and M inclusive. This option
currently allows to specify only a single interval, although it could be improved to allow
several intervals in a future version.

Absence of arithmetic overflows

The option -no-overflow instructs the analyzer to assume that integers are not bounded
and that the analyzed program’s arithmetic is exactly that of mathematical integers. This
option should only be used for codes that do not depend on specific sizes for integer types
and do not rely on overflows. For instance, the following program is analyzed as “non-
terminating” in this mode.

1 void main(void) {
2 int x=1;
3 while(x++);
4 return;
5 }

This option should only be activated when it is guaranteed that the sizes of integer types
do not change the concrete semantics of the analyzed code. It can be difficult to be certain
of this property. For instance, the following function’s behavior is sensitive to the size of
integers and to overflows:

22 CHAPTER 3. REFERENCE MANUAL

1 int abs(int x) {
2 if (x<0) x = -x;
3 return x;
4 }

With the -no-overflow option, the result of this function is a positive integer, for whatever
integer passed to it as an argument. This property is not true for a conventional architecture,
where abs(MININT) overflows and returns MININT.

The option -no-overflowmay be modified or suppressed in a later version of ValViewer.

3.5 Treatment of functions

3.5.1 Specification of the entry point of a complete application
The option -main f specifies that f should be used as the entry point for the analysis. If
this option is not specified, the analyzer uses the function called main as the entry point.

The analysis starts from a state in which initialized global variables contain their initial
values, and uninitialized ones contain zero. This only makes sense if the function passed
with this option is the actual entry point of this analyzed application. Each formal argument
of the function used as entry point contains in the initial state a non-deterministic value
that corresponds to its type. Non-aliasing locations are generated for the arguments with
a pointer type, and the value of the pointer argument is the union of the address of this
location and of NULL. For chain-linked structures, the allocation of such locations is done
only to a fixed depth.

This option is mutually exclusive with option -lib-entry.

3.5.2 Specification of the entry point of an incomplete application
The option -lib-entry f specifies that the entry point to use for the analysis is the func-
tion f, and that the analyzer should not use the initial values for globals in its initial state
(except for those qualified with the keyword const).

The analysis starts with an initial state where the integer components of global variables
(without the const qualifier) and parameters of f are initialized with a non-determinitic
value of their respective type. Their components of pointer types contain the non-deterministic
superposition of NULL and of the addresses of special non-aliasing locations allocated by
the analyzer, similarly to what is done for formal arguments of the entry point of a complete
application (section 3.5.1). This option is mutually exclusive with option -main.

3.5.3 Reusing the analysis of a function
If the user notices, in the application he or she is studying, a function f whose analysis
takes a long time, while the impact of this function on the behavior of the application as

3.6. TREATMENT OF LOOPS 23

a whole remains limited, it is possible for him/her to launch the analysis with the option
-mem-exec f.

The analyzer will then analyze the function f a single time in a context created to be
as general as possible, and the obtained results will later be reused each time a call to f is
encountered in the actual analysis of the application. This will make the analysis:

• faster, and

• less precise concerning everything affected by f.

If the function f has pointers as inputs, the generic analysis uses the adresses of spe-
cially allocated non-aliasing locations as the values for these pointers, similarly to what is
done for the formal arguments of the entry point of a complete application (section 3.5.1).
During the actual analysis of the application, each time a call to function f is encountered,
the analyzer determines if the state at the call site can be seen as an instance of the generic
state, and re-uses the results of the generic analysis if this is the case.

This option has not been intensively tested, and should be considered as experimental
at this point. The computation of the values of expressions is supposed to be correct when
it is used. However, there are known problems making the computations of inputs, outputs
and dependencies (section 3.2) incorrect for the functions that call a function analyzed with
this option.

3.6 Treatment of loops

3.6.1 Controlling approximations

The default treatment of loops by the analyzer may produce results that are too approxi-
mate. This section details how precision can be improved by tuning the parameters for the
treatment of loops.

When encountering a loop, the analyzer tries to compute a state that contains all the
actual concrete states that may happen at run-time, including the initial concrete state just
before entering the loop. This englobing state may be too imprecise by construction: typi-
cally, if the analyzed loop is initializing an array, the user does not expect to see the initial
values of the array appear in the state computed by the analyzer. The solution in this case
is to use unrolling, as described in section 3.6.2.

As compared to loop unrolling, the advantage of the computation by accumulation is
that it generally requires less iterations than the number of iterations of the analyzed loop.
The number of iterations does not need to be known (for instance, it allows to analyze a
while loop with a complicated condition). In fact, this method can be used even if the
termination of the loop is unclear. These advantages are obtained thanks to a technique of
successive approximations. The approximations are applied individually to each memory
location in the state. This technique is called “widening”.

24 CHAPTER 3. REFERENCE MANUAL

Although the analyzer uses heuristics to figure out the best parameters in the widening
process, it may (rarely) be appropriate to help it by providing it with the bounds that are
likely to be reached, for a given variable modified inside a loop.

Stipulating bounds

The annotation //@ loop pragma WIDEN_HINTS v1, . . . , vn, e1, . . . , em ;may be placed
before a loop, so as to make the analyzer use preferably the values e1, . . . , em when widen-
ing the sets of values attached to variables v1, . . . , vn.

If this annotation does not contain any variable, then the value e1, . . . , em are used as
bounds for all the variables modified inside the loop.

Example:

1 int i,j;
2
3 void main(void)
4 {
5 int n = 13;
6 /*@ loop pragma WIDEN_HINTS i, 12, 13; */
7 for (i=0; i<n; i++)
8 {
9 j = 4 * i + 7;

10 }
11 }

3.6.2 Loop unrolling
There are two different options for making ValViewer iterate the action of the body of the
loop on the state, as many times as specified, in order to obtain a precise representation of
the effect of the loop itself. If the number of iterations is sufficient, the analyzer is thus able
to determine that each cell in the array is initialized, on the contrary to the approximation
techniques from the previous section.

Syntactic unrolling

The option -ulevel n indicates that the analyzer should unroll the loops syntactically n
times before starting the analysis. If the provided number n is larger than the number of
iterations of the loop, then the loop is completely unrolled and the analysis will not observe
any loop in that part of the code.

Providing a large value for n makes the analyzed code bigger: this may cause the
analyzer to use more time and memory. This option can also make the code exponentially
bigger in presence of nested loops. A large value should therefore not be used in this case.

It is possible to control the syntactic unrolling for each loop in the analyzed code thanks
to the annotation //@ loop pragma UNROLL n;. This annotation should be placed in the

3.6. TREATMENT OF LOOPS 25

source code for the application, at the point that precedes the loop which should be unrolled
n times. The annotation loop pragma UNROLL has priority over the option -ulevel.

Semantic unrolling

The option -slevel n indicates that the analyzer is allowed to separate, in each point of
the analyzed code, up to n states from different execution paths before starting to compute
the unions of said states. An effect of this option is that the states corresponding to the first,
second,. . . iterations in the loop remain separated, as if the loop had been unrolled.

The number which should be passed to this option depends on the nature of the control
flow graph of the function to analyze. If the only control structure is a loop of m iterations,
then -slevel m allows to unroll the loop completely. The presence of other loops or
of if-then-else constructs multiplies the number of paths a state may correspond to,
and thus the number of states it is necessary to keep separated in order to unroll a loop
completely. For instance, the nested simple loops in the following example require the
option -slevel 54 in order to be completely unrolled:

int i,j,t[5][10];

void main(void)
{

for (i=0;i<5;i++)
for (j=0;j<10;j++)
t[i][j]=1;

}

When the loops are sufficiently unrolled, the result obtained for the contents of array t
are the optimally precise:
t[0..4][0..9] ∈ {1; }

The number to pass the option -slevel is of the order of the number of values for i
(the 6 integers between 0 and 5) times the number of possible values for j (the 11 integers
comprised between 0 and 10). If a value much lower than this is passed, the result of the
initialization of array t will only be precise for the first cells. The option -slevel 27
gives for instance the following result for array t :
t{[0..1][0..9]; [2][0..4]; } ∈ {1; }
{[2][5..9]; [3..4][0..9]; } ∈ {0; 1; }

In this result, the effects of the first iterations of the loops (for the whole of t[0], the
whole of t[1] and the first half of t[2]) have been computed precisely. The effects on
the rest of t were computed with approximations. Because of these approximations, the
analyzer can not tell if each of those cells was initialized (contains 1) or not (still contains
its initial value 0).

26 CHAPTER 3. REFERENCE MANUAL

Chapter 4

Annotations

The language for annotations is ACSL (http://www.frama-c.cea.fr/acsl.html). Only
a subset of the properties that can be expressed in ACSL can effectively be of service to or
checked by ValViewer.

4.1 Preconditions, postconditions and assertions

4.1.1 Truth value of a property
When an annotation of the form precondition, postcondition or assertion is encountered
by ValViewer, it evaluates its truth value in the current analysis state. The result of this
evaluation can be:

• valid, indicating that the property is verified for the current state;

• invalid, indicating that the property is certainly false for the current state;

• unknown, indicating that the imprecision of the current state and/or the complexity
of the property do not allow to conclude in one way or the other.

If a property obtains the evaluation valid every time the analyzer goes through the
point to which it is attached, it means that it is valid under the hypotheses made by the
analyzer. On the other hand, the evaluation invalid for a property may not necessarily
indicate a problem: the property is false only for the state corresponding to the path that
the analyzer is currently considering. It is possible that this path does not to occur for any
real execution. The fact that the analyzer is considering this path may be a consequence of
a previous approximation.

4.1.2 Reduction of the state by a property
After displaying its estimation of the truth value of a property P, the analyzer uses P to
refine the current state. In other words, it relies on the fact that the validity of P will be

27

28 CHAPTER 4. ANNOTATIONS

established through other means, even if it is not able to ensure that the property P holds
itself.

Let us consider for instance the following function, analyzed with the options
-val -slevel 12 -lib-entry f.

1 int t[10],u[10];
2
3 void f(int x)
4 {
5 int i;
6 for (i=0; i<10; i++)
7 {
8 //@ assert x >= 0 && x < 10;
9 t[i] = u[x];

10 }
11 }

ValViewer displays the following two warnings:

reduction.c:8: Warning: Assertion got status unknown.
reduction.c:8: Warning: Assertion got status valid.

The first warning is emitted at the first iteration through the loop, with a state where it is not
certain that x is in the interval [0..9]. The second warning is for the following iterations.
For these iterations, the value of x is in the considered interval, because the property has
been taken into account at the first iteration and the variable x has not been modified since.
Similarly, there are no warnings for the memory access u[x] at line 9, because under the
hypothesis of the assertion at line 8, this access may not cause a run-time error. The only
property left to be proved through other techniques is therefore the assertion at line 8.

Case analysis

When semantic unrolling is used (section 3.6.2), if an assertion is in the shape of a disjonc-
tion, then the reduction of the state by the assertion may be computed independently for
each sub-formula in the disjonction. This multiplies the number of states in the same way
that the analysis of the if-then-else does with semantic unrolling. Likewise, the states
are kept separated only if the limit (the numerical value passed to option -slevel) has not
been reached yet in that point of the program. This treatment may improve the analysis’
precision. In particular, it can be used to provide hints to the analyzer, as shown in the
following example.

1 int main(void)
2 {
3 int x = Frama_C_interval(-10, 10);

4.1. PRECONDITIONS, POSTCONDITIONS AND ASSERTIONS 29

4 //@ assert x <= 0 || x >= 0 ;
5 return x * x;
6 }

With the option -slevel 2, ValViewer finds the result of this computation to be in
[0..100]. Without the option, or without the annotation on line 4, the result found is
[-100..100]. Both are correct, but the former is optimal considering the available infor-
mation and the representation of large sets as intervals, while the latter is approximated.

Limitations

Attention should be paid to the two following limitations:

• a precondition or assertion only constrains the state that the analyzer has computed
by itself. In particular in the case of a precondition for a function analyzed with the
option -lib-entry, the precondition can only reduce the generic state that the an-
alyzer would have used had there not been an annotation. It can not make the state
more general. For instance, it is not possible to specify that there can be aliasing be-
tween two pointer arguments of the function analyzed with the option -lib-entry,
because it would be a generalization, as opposed to a restriction, of the initial state
generated automatically by the analyzer;

• the interpretation of an ACSL formula by ValViewer may be approximated. The
state effectively used after taking the annotation into account is an over-set of the
state described by the user. In the worse case (for instance if the formula is too
complicated for the analyzer to exploit), this over-set is the same as the original
state. It appears as if the annotation is not taken into account at all.

The two functions below illustrate both of these limitations:

1 int a;
2 int b;
3 int c;
4
5 //@ requires a == (int)&b || a == (int)&c;
6 int generalization(void)
7 {
8 b = 5;
9 *(int*)a = 3;

10 }
11
12 //@ requires a != 0;
13 int not_reduced(void)
14 {
15 return a;
16 }

30 CHAPTER 4. ANNOTATIONS

If the analyzer is launched with the option -lib-entry generalization, the initial
state generated for the analysis of function generalization contains an interval of inte-
gers (no adresses) for the variable a of type int.
The precondition a == (int)&b || a == (int)&c will probably not have the effect ex-
pected by the user: his/her intention appears to be to generalize the initial state, which is
not possible.

If the analyzer is launched with the option -lib-entry not_reduced, the result for
variable a is the same as if there was no precondition. The interval computed for the
returned value, [--..--], seems not to take the precondition into account because the
analyzer can not represent the set of non-zero integers.

Note: the set of values computed by the analyzer remains correct, because it is an over-
set of the set of the value that can effectively happen at run-time with the precondition.
When an annotation appears to be ignored for the reduction of the analyzer’s state, it is not
in a way that could lead to incorrect results.

4.2 The “assigns” clauses
These clauses indicate which variables that may be modified by a function, and optionally
the dependencies of the new values of these variables.

In the following example, the assigns clause indicates that the withdraw function
does not modify any memory cell other than p->balance.

1 /*@ assigns p->balance;
2 @*/
3 void withdraw(purse *p,int s) {
4 p->balance = p->balance - s;
5 }

Chapter 5

Primitives

It is possible to insert in the source code under analysis calls to special pre-defined func-
tions. This covers three cases:

• emulating standard C library functions

• parameterizing the analysis

• observing the results of the analysis.

5.1 Standard C Library
The application under analysis may call functions such as malloc, strncpy, atan,. . . The
source code for these functions is not necessarily available, as they are rather part of the
system than of the application itself. In theory, it would be possible for the user to give
a C implementation of these functions, but those implementations might prove difficult to
analyze with ValViewer. A more pragmatic solution is to use a primitive function of the
analyzer for each standard library call that would model as precisely as possible the effects
of the call.

Currently, the primitive functions available this way are all inspired from the POSIX in-
terface. It would however be possible to model other system interfaces. Existing primitives
are described in the rest of this section.

5.1.1 malloc Function
The file share/malloc.c contains various models for the malloc function. To choose a
given model, one of the following symbol, FRAMA_C_MALLOC_INDIVIDUAL,
FRAMA_C_MALLOC_POSITION, FRAMA_C_MALLOC_CHUNKS or FRAMA_C_MALLOC_HEAP, must
be defined before #including this file. Their particularities are described in the malloc.c
file itself.

Generally speaking, better results are achieved when each loop containing calls to
malloc is entirely unrolled. Still, some models are more robust than the other ones if

31

32 CHAPTER 5. PRIMITIVES

this condition is not met. FRAMA_C_MALLOC_POSITION is the most robust option with
respect to loops that are not unrolled. If some loops containing calls to malloc are not en-
tirely unrolled, FRAMA_C_MALLOC_INDIVIDUAL and FRAMA_C_MALLOC_CHUNKS might lead
to ValViewer entering in an infinite computation.

#define FRAMA_C_MALLOC_INDIVIDUAL
#include "share/malloc.c"

void main(void)
{
int * p = malloc(sizeof(int));
...

}

5.1.2 Mathematical Operations over Floating-Point Numbers
Few functions are currently available. Their prototype is given in share/math.h. In order
to use these functions, share/math.c must be added on the command line.

5.1.3 String Manipulation Functions
Few functions are currently available. Their prototype is given in share/libc.h. In order
to use these functions, share/libc.c must be added on the command line.

5.2 Parameterizing the Analysis

5.2.1 Adding some Non-Determinism
The following functions, declared in share/builtin.c allows to introduce some non-
determinism in the analysis. The results given by the tool are valid for all values proposed
by the user, on the contrary to what a testing tool would typically do. Such a tool would
indeed pick up some values among the one proposed to execute the application.

int Frama_C_nondet(int a, int b)

void *Frama_C_nondet_ptr(void *a, void *b)

int Frama_C_interval(int min, int max)

float Frama_C_float_interval(float min, float max);

The implementation of these functions might change in future versions of ValViewer,
but their types and their behavior will stay the same.

Example of use of the functions introducing non-determinism:

5.3. OBSERVING INTERMEDIATE RESULTS 33

1 #include "share/builtin.h"
2
3 int A,B,X;
4 void main(void)
5 {
6 A = Frama_C_nondet(6, 15);
7 B = Frama_C_interval(-3, 10);
8 X = A * B;
9 }

With the command
toplevel.opt -val -cpp-command "gcc -C -E -I .../ppc/share" \

ex_nondet.c .../ppc/share/builtin.c
The obtained result for X is [-45..150],0%3.

5.3 Observing Intermediate Results

In addition to using the graphical user interface, it is also possible to obtain information
about the value of variables at a particular point of the program in log files. This is done
by inserting at the relevant points in the source code calls to the functions described below.

Currently, functions displaying intermediate results all have an immediate effect, i.e
their effect is to display the particular state that the analyzer is propagating at the moment
where it reaches the call. Thus, these functions might expose some undocumented aspects
of the behavior of the analyzer. This is in particular the case if they are used together
with semantic unrolling (see section 3.6.2). The results displayed might be found counter-
intuitive by the user. It is recommended to attach a greater importance to the union of the
values displayed during the whole analysis than to the particular order during which the
sub-sets composing these unions are propagated in practice.

5.3.1 Displaying the entire memory state

Displaying the current memory state each time the analyzer reaches a given point of the
program is done with a call to the function Frama_C_dump_each().

5.3.2 Displaying the value of an expression

Displaying the values of an expression expr each time the analyzer reaches a given point
of the program is done with a call to the function Frama_C_show_each_name(expr).

“name” can be replaced by an arbitrary identifier s, which appears in the output of the
analyzer. It is recommended to use different identifier for each use of these functions, as
shown in the following example:

34 CHAPTER 5. PRIMITIVES

void f(int x)
{
int y;
y = x;
Frama_C_show_each_x(x);
Frama_C_show_each_y(y);
Frama_C_show_each_delta(y-x);
...

}

Chapter 6

FAQ

Q.1 Which option should I use to improve the handling of loops in my program,
-ulevel or -slevel?

The options -ulevel and -slevel have different sets of advantages and drawbacks.
The main drawback of -ulevel is that it performs a syntactic modification of the analyzed
source code, which might hamper its manipulation. On the other hand, syntactic unrolling,
by explicitly separating iteration steps, allows, in particular in the graphical user interface
frama-c-gui, to easily check values or express properties for a given iteration step of the
loop.

-slevel option does not allow to consider separately a given iteration step of the loop.
In fact, this option might be a little disturbing for the user when the program contains
loops for which the tool can not decide the truth value of the condition for a given step,
nested loops, or if-then-else statements1. The main advantages of this option are that it
leaves the source code unchanged and that it applies also to loops that are built using gotos
instead of for and while. -slevel option requires less memory, and as a consequence is
often faster. A current drawback of -slevel, which should disappear in future versions of
ValViewer, is that it concerns the entire source code under analysis.

Q.2 Alarms that occur after a true alarm in the analyzed code are not detected. Is
that normal? May I give some information to the tool so that it detects those alarms?

In both cases the answer is “yes”. Let us consider the following example:

1 int x,y;
2 void main(void)
3 {
4 int *p=NULL;
5 x = *p;

1if-then-else statements are “unrolled” in a similar manner as loops

35

36 CHAPTER 6. FAQ

6 y = x / 0;
7 }

When this example is analyzed by ValViewer, the tool does not emit an alarm on line
6. This is perfectly correct, since no error occurs at run time on line 6. In fact, line 6
is not reached at all, since execution stops at line 5 when attempting to dereference the
NULL pointer. It is unreasonable to expect the tool to perform a choice over what may
happen after dereferencing NULL. It is possible to give some new information to the tool
so that analysis can continue after a true alarm. It is called debugging. Once the issue
has been corrected in the source code under analysis — more precisely once the user has
convinced him/herself that there is no problem at this point in the source code — it becomes
possible to trust the alarms that occur after the given point, or the absence thereof (see next
question).

Q.3 Can I trust the alarms (or the absence of alarms) that occur after a false alarm
in the analyzed code? May I give some information to the tool so that it detects these
alarms?

The answers to both these questions are respectively “yes” and “there is nothing special
to do”. If an alarm might be spurious, the tool automatically goes on with the analysis. If
the alarm is really a false alarm, the result given in the rest of the analysis can be consid-
ered with the same level of trust than if the tool wouldn’t have displayed the false alarm.
Remember however that this applies only in the case of a false alarm. Deciding whether
the first alarm is a true or a false one is the responsibility of the user. This situation can be
shown in the following example:

1 int x,y,z,r,i,t[101]={1,2,3};
2
3 void main(void)
4 {
5 x = Frama_C_interval(-10,10);
6 i = x * x;
7 y = t[i];
8 r = 7 / (y + 1);
9 z = 3 / y;

10 }

false_al.c:7: Warning: accessing out of bounds index.
assert ((0 <= i) && (i < 101));

false_al.c:9: Warning: division by zero: assert (y != 0);

On line 7, the tool is only capable to detect that i lies in the interval -100..100, which
is approximated but correct. The alarm on line 7 is false, because the values that i can take

37

at run-time lie in fact in the interval 0..100. As it proceeds with the analysis, ValViewer
detects that line 8 is safe, and that there is an alarm on line 9. These results must be
interpreted as such: Supposing that the array access on line 7 was legitimate then line 8 is
safe, and there is a threat on line 9. As a consequence, if the user can convince him/herself
that the threat on line 7 is false, he or she can trust these results (i.e. there is nothing to
worry about on line 8, but line 9 needs investigation).

Q.4 In my annotations, macros are not preprocessed. What should I do?

The annotations being contained inside C comments, they a priori aren’t affected by
the preprocessing. It is possible to instruct ValViewer to launch the preprocessing on anno-
tations with the option -pp-annot. However, this option still is experimental at this point.
In particular, it requires the preprocessor to be GNU cpp, the GCC preprocessor2. This
restriction might disappear in future versions of ValViewer. Moreover, the preprocessing is
then made in two passes (the first pass operating on the code only, and the second operat-
ing on the annotations only). For this reason, the options passed to -cpp-command in this
case should only be commands that can be applied several times without ill side-effects.
For instance, the -include option to cpp is a command-line equivalent of the #include
directive. If it was passed to cpp-command while the preprocessing of annotations is be-
ing used, the corresponding header file would be included twice. The ValViewer option
-cpp-extra-args <args> allows to pass <args> at the end of the command for the first
pass of the preprocessing.

Example: In order to force gcc to include the header mylib.h and to preprocess the
annotations, the following commandline should be used:

frama-c-gui -val -cpp-command ’gcc -C -E -I.’ \
-cpp-extra-args ’-include mylib.h’ \
-pp-annot file1.c

2More precisely, the preprocessor must understand the -dD and the -P options that outputs macros defi-
nitions along with the preprocessed code and inhibits the generation of #line directives respectively.

