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Preface

FaCiLe is a constraint programming library over integer finite domains written in OCaml [7]. It
offers all usual constraints system facilities to create and handle finite domain variables, arith-
metic expressions and constraints (possibly non-linear), built-in global constraints and search
goals. FaCiLe allows to easily build user-defined constraints and goals (including recursive ones)
from scratch or by combining simple primitives, making pervasive use of OCaml higher-order func-
tionals to provide a simple and flexible user interface. As FaCiLe is an OCaml library and not
“yet another language”, the user benefits from type inference and strong typing discipline, high
level of abstraction, modules and objects system, as well as native code compilation efficiency,
garbage collection and replay debugger. All these features of OCaml (among many others) allow
to prototype and experiment quickly: modeling, data processing and interface are implemented
with the same powerful and efficient language.

This manual is not a document about constraint programming techniques but only a tool
description. Users should be familiar with other constraint systems to easily apprehend FaCiLe
through the reading of this manual. Beginners can easily find comprehensive information on the
Web (e.g. http://www.cs.unh.edu/ccc/archive/). This manual is neither a course about func-
tional programming and users should refer to the official Caml Web site at http://caml.inria.fr/
and the OCaml manual [7] to obtain introductory (as well as advanced) material about the host
language of FaCiLe. Hurried readers may also take a look at a short overview appearing in the
ALP Newsletter [2]. Thorough ones may find deeper insights on FaCiLe implementation details
unveiled in the second part of one of the author PhD thesis [1].

Since OCaml forbids overloading, FaCiLe unusual looking operators might be a little discon-
certing at first sight. Moreover, there is no implicit casting, so explicit conversions between vari-
ables (or integer) and arithmetic expressions are compulsory. These features lead to less concise
expressions than with poorly typed languages, however the user precisely knows which operation
is executed by the system and cannot erratically mix values of different types. Furthermore, ML
style higher-order functionals and powerful type system ease the design and processing of complex
data structures without the need of syntactic sugar (iterators, mapping and folding are “native” in
OCaml). So FaCiLe does not endlessly provide more and more ad hoc functions for each particular
case to exhibit the smallest possible code for toy examples, but rather aims at featuring simple
building blocks and operators to combine them efficiently.

This manual is structured in two main parts:

1. The user’s manual which starts with basic examples to give a taste of FaCiLe, then details the
main concepts and eventually discusses more advanced subjects like the design of constraints
and goals from scratch.

2. The reference manual which describes module by module all the functionalities of FaCiLe.
This part of the documentation is automatically generated from the source code interface
files (.mli), which may be directly consulted.

Numerous examples are provided all along the user’s manual and more complete ones are available
within the standard distribution in the examples directory, as well as a generic Makefile do build
FaCiLe / OCaml softwares.
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Eventually, we would like to thank our early known beta-testers, Mattias Waldau and Pal-
Kristian Engstad, whose suggestions helped us to improve FaCiLe.

Good reading.



Foreword

Portability

FaCiLe requires only the OCaml system (release 3.02 or greater) and should work in any environ-
ment supporting this system. It is developed in a Linux environment on PC architecture but does
not use any specificities of Unix. It should work on other operating systems (i.e. MS Windows,
Mac OS...), provided that the installation process is customised to the environment.

FaCiLe Structure and Naming Conventions

The library is split into numerous modules and submodules. They are all included (possibly with a
limited user-oriented interface) into the main module Facile which should be opened by any other
modules using FaCiLe. All the modules are extensively described in part II of this documentation.
We do not recommend to users to open modules in Facile but to use prefixed notations (e.g.
function post of Cstr is written Cstr.post). The pseudo-module named Easy is the exception
and should be opened: it provides several aliases to the most frequently used values (see 4.1) and
functions.

To avoid interferences with other modules of the user, all the modules are aliased in the Facile
module and implementation module files are all prefixed by fcl_ (except of course Facile itself).
For example, implementation of module Gcc is in file fcl_gcc.ml and alias

module Gcc = Fcl_gcc

is defined in Facile (facile.ml). This alias mechanism is entirely transparent to the user of
FaCiLe except for the one interested by the implementation of the library. The only possible
visibility of Fcl_ prefix is given by the uncaught exceptions printer (e.g. Fcl_stak.Fail instead
of Stak.fail).

The reference part of this documentation is automatically generated from module interfaces
(.mli). Some available functions, types or modules are intentionally not documented or even
hidden in Facile module. They are not intented to the casual user.

Values and types names try to benefit as much as possible from the modularity. For example,
most of the types are named t: type of constraints is Cstr.t, type of domains is Domain.t... In
the same way, printing functions are named fprint, constraints are named cstr (e.g. Gcc.cstr)...

Standard or label mode of the OCaml compiler (option -labels) may be used with the library.
FaCiLe makes use of labels (labelled arguments) as less as possible; only optional arguments are
labelled.

Compilation with FaCiLe

FaCiLe is provided as bytecode and native code1 libraries.
Bytecode version is compiled with debugging information (-g option of ocamlc) and then can

be used with the source-level replay debugger (ocamldebug). A lot of checks are done in this mode
1If supported by your architecture. See http://caml.inria.fr/ocaml/portability.html
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and exceptions may be raised revealing bad usage of the system (“fatal” errors) or bugs in the
system itself (“internal” errors). In the second case, diligent users should send a bug report to the
developers.

In the native code version, these redundant checks are not done and this mode should be used
only on well-tried code.

The Makefile in the examples directory of the distribution provides generic rules to compile
with FaCiLe in both modes producing .out (bytecode) or .opt (native code) executables.

The library may also be used through linked toplevel produced with the following command
(after installation):

ocamlmktop -o facile -I +facile facile.cma

This is the toplevel used in the inlined examples of this documentation and invoked with the
command line:

./facile -I +facile

Availability

The FaCiLe distribution and documentation are available from the web site where general infor-
mation can be found:

http://www.recherche.enac.fr/opti/facile

Questions, bug reports... can be mailed to

facile@recherche.enac.fr

Installation

Installation of FaCiLe is described in the README file of the distribution. Below is a copy of the
corresponding part:

INSTALLATION:

All you need is the Objective Caml 3.02 (or greater) compiler and
standard Unix tools (make...).

0) Configure the library. The single option of configuration is the
directory you want to put the library files in (facile.cma, facile.cmxa,
facile.a facile.cmi). Default is the subdirectory "facile" of the Ocaml
library directory (returned by "ocamlc -where").

./configure [--faciledir <target directory>]

1) First compile the library with a simple

make

2) Check the result

make check

You should get a solution for the 8 queens problem.
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3) Then install the library with a (usually as root)

make install

Examples

The directory examples of the distribution contains some examples and a generic Makefile to
compile files with FaCiLe. Examples are taken from the classic litterature:

Coins Give back change for any amount

Golf Organize a golf tournament for 8 teams of 4 players

Golomb Find optimal Golomb rulers

Jobshop Solve the famous mt10 scheduling problem – Edge-Finding inside!

Magic To count and to be counted

Marriage Stabilize preferences among spouses

Prolog Use FaCiLe as a Prolog interpreter on a family tree problem

Queens Place queens on a chessboard

Seven eleven My grocer’s favorite arithmetic puzzle

Tiles Tile a big square with small squares
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Chapter 1

Getting Started

This first chapter introduces the overall framework of FaCiLe and gives a preliminary insight about
its programming environment and functionalities.

OCaml code using FaCiLe facilities (file csp.ml in the following example) must be compiled
with the library of object byte code facile.cma when batch compiling with ocamlc:

ocamlc -I +facile facile.cma csp.ml

and with the library of object code facile.cmxa for native compilation with ocamlopt:

ocamlopt -I +facile facile.cmxa csp.ml

provided that the standard installation of FaCiLe (and previously of the OCaml system of course)
has been performed (see p. vi) and that the facile.cm[x]a files have been successfully created
in the OCaml standard library directory. For larger programs, a generic Makefile can be found in
directory examples (see p. vii).

It may however be convenient to use an OCaml custom toplevel to experiment toy examples
or check small piece of serious (thus larger) code. A FaCiLe toplevel (i.e. in which facile.cma is
pre-loaded) is easily built with the following command:

ocamlmktop -o facile -I +facile facile.cma

and invoked with:

./facile -I +facile

The two following sections give a quick overview of the main basic concepts of FaCiLe with
the help of two very simple examples which are explained step by step.

1.1 Basics

We first give a slight taste of FaCiLe with the recurrent trivial problem of the Canadian flag: one
has to repaint the Canadian flag (shown in figure 1.1) with its two original colors, red and white,
so that two neighbouring areas don’t have the same color and the maple leaf is... red, of course.
The CSP model is desperately straightforward:

• one variable for each area l, c, r and m;

• all variables have the same domain [0..1], 0 being red and 1, white;

• one difference constraint for each adjacency l 6= c, c 6= r, m 6= c and the maple leaf is forced
to be red m = 0.

The following piece of code solves this problem:

3
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l

c

rm

Figure 1.1: The problem of the Canadian flag

maple.ml
open Facile
open Easy
let _ =
(* Variables *)
let red = 0 and white = 1 in
let dom = Domain.create [red; white] in
let l = Fd.create dom and c = Fd.create dom
and r = Fd.create dom and m = Fd.create dom in
(* Constraints *)
Cstr.post (fd2e l <>~ fd2e c);
Cstr.post (fd2e c <>~ fd2e r);
Cstr.post (fd2e m <>~ fd2e c);
Cstr.post (fd2e m =~ i2e red);
(* Goal *)
let var_list = [l;c;r;m] in
let goal = Goals.List.labeling var_list in
(* Search *)
if Goals.solve goal then begin
Printf.printf "l="; Fd.fprint stdout l;
Printf.printf " c="; Fd.fprint stdout c;
Printf.printf " r="; Fd.fprint stdout r;
Printf.printf " m="; Fd.fprint stdout m;
print_newline () end

else
prerr_endline "No solution"

unix% ocamlc -I +facile facile.cma maple.ml
unix% ./a.out
l=0 c=1 r=0 m=0

Surprisingly enough, the new flag is a faithful copy of the genuine one.
This small example introduces the following features of FaCiLe:

• The user interface to the library is provided by module Facile which gathers several spe-
cialized “submodules”. We thus advise to open module Facile systematically to lighten
FaCiLe functions calls. Most frequently used functions and submodules can then be directly
accessed by opening module Easy (open Easy). Functions and modules names have been
carefully chosen to avoid name clashes as much as possible with OCaml standard library
when opening these two modules, but the “dot prefix” notation can still be used in case of
a fortuitous overlapping.
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• The problem variables are created by a call to function create of module Fd (for Finite
domain, see ??) which takes a domain of type Domain.t as only argument. Domains are
built and handled by functions of module Domain (see ??) like Domain.create l which
creates a domain containing all integers of list l.

• fd2e and i2e constructs an expression respectively from a variable and an integer. More
complex arithmetic expressions and constraints are built with infix operators (obtained by
adding the suffix ~ to their integer counterparts) taking two expressions as arguments. Most
usual arithmetic operators (not necessarily infix) are provided in module Arith (see ??).

• Function post from module Cstr adds a constraint to the constraint “store”, which means
that the constraint is taken into account and domain reduction is performed (as well as
propagation on other variables).

• Here the search goal is a simple labeling of the list of all the problem variables [l;c;r;m]
obtained by a call to function labeling of submodule List embedded in module Goals (see
??). The goal is thereafter solved by a call to solve which returns false if a failure occurred
and true otherwise.

• The solution is then printed using function fprint from module Fd, which prints a variable on
an output channel, i.e. its domain if the variable is not instantiated and its value otherwise.

This piece of code illustrates a typical FaCiLe CSP solving with the following pervasive ordered
structure:

1. data and variables declaration

2. constraints statements

3. search goal specification

4. goal solving, i.e. searching solution(s)

In the next section, a more sophisticated example will help to precisely describe how these features
can be easily implemented with FaCiLe.

1.2 A Classic Example

We solve now the even more recurrent cryptarithmetic problem SEND + MORE = MONEY
(see figure 1.2) where each letter stands for a distinct digit (with M 6= 0 and S 6= 0).

S E N D
+ M O R E
M O N E Y

Figure 1.2: The SEND + MORE = MONEY problem

We model this problem with one variable for each digit plus three auxilliary variables to carry
over, and the subsequent four arithmetic constraints specifying the result of the addition as we
would do by hand. The following program implement this model:

smm.ml
open Facile
open Easy
let _ =
(* Variables *)
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let s = Fd.interval 0 9 and e = Fd.interval 0 9 and n = Fd.interval 0 9
and d = Fd.interval 0 9 and m = Fd.interval 0 9 and o = Fd.interval 0 9
and r = Fd.interval 0 9 and y = Fd.interval 0 9 in
(* Constraints *)
Cstr.post (fd2e m >~ i2e 0);
Cstr.post (fd2e s >~ i2e 0);
let digits = [|s;e;n;d;m;o;r;y|] in
Cstr.post (Alldiff.cstr digits);
let c = Fd.array 3 0 1 in (* Carry array *)
let one x = fd2e x and ten x = i2e 10 *~ fd2e x in
Cstr.post ( one d +~ one e =~ one y +~ ten c.(0));
Cstr.post (one c.(0) +~ one n +~ one r =~ one e +~ ten c.(1));
Cstr.post (one c.(1) +~ one e +~ one o =~ one n +~ ten c.(2));
Cstr.post (one c.(2) +~ one s +~ one m =~ one o +~ ten m);
(* Search goal solving *)
if Goals.solve (Goals.Array.labeling digits) then begin
let value = Fd.elt_value in
Printf.printf " %d%d%d%d\n" (value s) (value e) (value n) (value d);
Printf.printf "+ %d%d%d%d\n" (value m) (value o) (value r) (value e);
Printf.printf "=%d%d%d%d%d\n" (value m) (value o) (value n) (value e) (value

y)
end else
prerr_endline "No solution"

unix% ocamlc -I +facile facile.cma smm.ml
unix% ./a.out
9567

+ 1085

=10652

We detail each step of the above example:

• Variables whose domains range integer intervals are created with function Fd.interval
inf sup which creates a variable whose domain contains all integers between inf and sup
(inclusive).

• Disequations M 6= 0 and S 6= 0 are then expressed by arithmetic inequality constraints and
we assert that all digits must be distinct with the global Alldiff.cstr constraint which takes
an array of variables as argument (see ??). FaCiLe provides some other global constraints
as well, such as the global cardinality constraint (a.k.a. the “distribute” constraint) or the
“sorting” constraint (see ?? and ??), embedded in separate module and called with function
cstr.

• The three auxilliary carry variables are then created with Fd.array n inf sup which builds
an array of n variables whose domains range the interval [inf..sup], and two auxilliary func-
tions one x and ten x are defined which return an arithmetic expression being respectively
equal to x and ten times x to lighten the main constraints statements.

• The equations reproducing the way we would compute the addition of figure 1.2 by hand
are then straightforwardly stated and posted to the constraint store. The problem is finally
solved as in the first example by a simple labeling of the decision variables, i.e. the “digits”,
using function labeling of module Goals.Array (which is the counterpart of Goals.List
over arrays of variables). The solution is then printed with function Fd.elt_value which
returns the integer value of an instantiated variable (or raises an exception whenever it is
still unbound).
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We could of course have used a different but equivalent model constraining the addition to be
exact without auxilliary carry variables:

...
let op1 =
i2e 1000 *~ fd2e s +~ i2e 100 *~ fd2e e +~ i2e 10 *~ fd2e n +~ fd2e d

and op2 =
i2e 1000 *~ fd2e m +~ i2e 100 *~ fd2e o +~ i2e 10 *~ fd2e r +~ fd2e e in

let result =
i2e 10000 *~ fd2e m +~
i2e 1000 *~ fd2e o +~ i2e 100 *~ fd2e n +~ i2e 10 *~ fd2e e +~ fd2e y in

Cstr.post (op1 +~ op2 =~ op3);
...

This alternative model would undoubtedly produce the same result.
The next chapter will explore in a more formal way how to handle the main concepts of FaCiLe

introduced in the two previous examples.
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Chapter 2

Building Blocks

FaCiLe offers variables and constraints on integer and set finite domains. This chapter first
describes how to build a constraint program on standard integer variables, while explaining the
basics underlying concepts of FaCiLe. Then section 2.7 extends the scheme to set variables, which
work in a similar fashion.

2.1 Domains

Finite domains of integers are created, accessed and handled with functions of module Domain (ex-
haustively described in section ??). Domains basically are sets of ”elements” of type Domain.elt
(here integers, or sets of integers for the set domains described in section 2.7.1). They are repre-
sented as functional objects of (abstract) type Domain.t and can therefore be shared. Domains
are built with different functions according to the domain properties:

• Domain.empty is the empty domain;

• Domain.create is the most general constructor and builds a domain from a list of integers,
possibly unsorted and with duplicates;

• Domain.interval is a shorthand when domains are continuous;

• Domain.boolean is a shorthand for create [0;1];

• Domain.int is the largest (well, at least very large) domain.

Domains can be conveniently printed on an output channel with Domain.fprint and are dis-
played as lists of non-overlapping intervals and single integers [inf1-sup1;val2;inf3-sup3;...]
in increasing order:

#let discontinuous = Domain.create [4;7;2;4;-1;3];;
val discontinuous : Facile.Domain.t = <abstr>

#Domain.fprint stdout discontinuous;;
[-1;2-4;7]- : unit = ()

#let range = Domain.interval 4 12;;
val range : Facile.Domain.t = <abstr>

#Domain.fprint stdout range;;
[4-12]- : unit = ()

Various functions allow access to properties of domains like, among others (see ??), Domain.is_empty,
Domain.min, Domain.max whose names are self-explanatory:

9
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#Domain.is_empty range;;
- : bool = false

#Domain.max range;;
- : Facile.Domain.elt = 12

#Domain.member 3 discontinuous;;
- : bool = true

#Domain.values range;;
- : Facile.Domain.elt list = [4; 5; 6; 7; 8; 9; 10; 11; 12]

Operators are provided as well to handle domains and easily perform set operations like
Domain.intersection, Domain.union, Domain.difference and domain reduction like Domain.remove,
Domain.remove_up, Domain.remove_low, etc. (see ??):

#Domain.fprint stdout (Domain.intersection discontinuous range);;
[4;7]- : unit = ()

#Domain.fprint stdout (Domain.union discontinuous range);;
[-1;2-12]- : unit = ()

#Domain.fprint stdout (Domain.remove_up 3 discontinuous);;
[-1;2-3]- : unit = ()

#Domain.fprint stdout (Domain.remove_closed_inter 7 10 range);;
[4-6;11-12]- : unit = ()

2.2 Variables

FaCiLe variables are attributed objects[6] which maintain their current domain and can be back-
tracked during the execution of search goals.

Creation

FaCiLe finite domain constrained variables are build and handled by functions of module Var.Fd
(described exhaustively in section ??). Variables are objects of type Fd.t created by a call to one
of the following functions of module Var.Fd:

• create d takes a domain d as argument.

• interval inf sup yields a variable whose domain ranges the interval [inf..sup]. It is
equivalent to create (Domain.interval inf sup).

• array n inf sup creates an array of n “interval” variables. Equivalent to Array.init n
(fun _ -> Fd.interval inf sup).

• int n returns a variable already bound to n.

Note that the submodule Fd can be reached by opening module Easy; in all the toplevel examples,
modules Facile and Easy are supposed open, therefore a function f of module Fd is called with
Fd.f instead of Facile.Var.Fd.f.

The first three creation functions actually have an optional argument labelled ?name which
allows to associate a string identifier to a variable. The ubiquitous fprint function writes a
variable on an output channel and uses this string name if provided or an internal identifier if not:

#let vd = Fd.create ~name:"vd" discontinuous;;
val vd : Facile.Var.Fd.t = <abstr>

#Fd.fprint stdout vd;;
vd[-1;2-4;7]- : unit = ()
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Attribute

A FaCiLe variable can be regarded as either in one of the following two states:

• uninstantiated or unbound, such that an “attribute” containing the current domain (of size
strictly greater than one) is attached to the variable;

• instantiated or bound, such that merely an integer is attached to the variable.

So an unbound variable is associated with an attribute of type Var.Attr.t holding its current
domain, its string name, a unique integer identifier and various internal data irrelevant to the
end-user. Functions to access attributes data are gathered in module Var.Attr:

• dom returns the current domain of an attribute;

• the mapping of fprint, min, max, size, member of module Domain applied on the embedded
domain of an attribute (e.g. min a is equivalent to Domain.min (dom a));

• id to get the identifier of an attribute;

• constraints_number returns the number of “active” constraints still attached to a variable.

Although variables are of abstract type Fd.t, function Fd.value v returns a concrete view of type
Var.concrete_fd = Unk of Attr.t | Val of int 1 of a variable v, so that a control structure
that depends on the instantiation of a variable will typically look like:

match Fd.value v with
Val n -> f_bound n

| Unk attr -> f_unbound attr

An alternative boolean function Fd.is_var returns the current state of a variable, sparing the
“match” construct.

#let v1 = Fd.create (Domain.create [1]) (* equivalent to Fd.int 1 *);;
val v1 : Facile.Var.Fd.t = <abstr>

#Fd.is_var v1;;
- : bool = false

#Fd.fprint stdout v1;;
1- : unit = ()

Domain Reduction

Module Fd provides two functions to perform backtrackable domain reductions on variables, typ-
ically used within instantiation goals and filtering of user-defined constraints:

• unify v n instantiates variable v to integer n or fails whenever n does not belong to the
domain of v. unify may be called on instantiated variables.

#let vr = Fd.interval 2 6;;
val vr : Facile.Var.Fd.t = <abstr>

#Fd.unify vr 7;;
Exception: Fcl_stak.Fail "Var.XxxFd.subst".

#Fd.unify vr 5;;
- : unit = ()

1Type Var.concrete fd constructors Unk and Val stand respectively for “Unknown” (unbound) and “Value”
(bound).
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#Fd.fprint stdout vr;;
5- : unit = ()

#Fd.unify v1 2;;
Exception: Fcl_stak.Fail "Var.XxxFd.unify".

#Fd.unify v1 1;;
- : unit = ()

• refine v dom reduces the domain of v to dom. dom must be included in the current
domain of v otherwise an assert failure is raised with the byte code library facile.cma or
the system will be corrupted with the optimized native code library facile.cmxa.

#Fd.fprint stdout vd;;
vd[-1;2-4;7]- : unit = ()

#match Fd.value vd with
# Val n -> () (* Do nothing *)
# | Unk attr -> (* Remove every value > 2 *)
# let new_dom = Domain.remove_up 2 (Var.Attr.dom attr) in
# Fd.refine vd new_dom;;
- : unit = ()

#Fd.fprint stdout vd;;
vd[-1;2]- : unit = ()

Whenever the domain of a variable becomes empty, a failure occurs (see 2.5 for more explanations
about failure):

#match Fd.value vd with
# Val n -> () (* Do nothing *)
# | Unk attr -> (* Remove every value < 4 *)
# let new_dom = Domain.remove_low 4 (Var.Attr.dom attr) in
# Fd.refine vd new_dom;;
Exception: Fcl_stak.Fail "Var.XxxFd.refine".

Access

Besides Fd.value and Fd.is_var which access the state of a variable, module Fd provides the
mapping of module Domain functions like Fd.size, Fd.min, Fd.max, Fd.values, Fd.iter and
Fd.member, and they return meaningful values whatever the state (bound or unbound) of the
variable may be:

#let vr = Fd.interval 5 8;;
val vr : Facile.Var.Fd.t = <abstr>

#Fd.size vr;;
- : int = 4

#let v12 = Fd.int 12;;
val v12 : Facile.Var.Fd.t = <abstr>

#Fd.member v12 12;;
- : bool = true

Contrarily, function Fd.id, which returns the unique identifier associated with a variable, or
function Fd.name, which returns its specified string name, only work if the variable is still unin-
stantiated, otherwise an exception is raised.
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An order based on the integer identifiers is defined by function Fd.compare2 as well as an
equality function Fd.equal, observing the following two rules:

1. bound variables are smaller than unbound variables;

2. unbound variables are compared according to their identifiers.

#Fd.id vr;;
- : int = 2

#Fd.id v12;;
Exception: Failure "Fatal error: Var.XxxFd.id: bound variable".

#Fd.compare v12 (Fd.int 11);;
- : int = 1

#Fd.compare vr v12;;
- : int = 1

#Fd.id vd;;
- : int = 0

#Fd.compare vd vr;;
- : int = -1

Eventually, function Fd.elt_value returns the integer value of a bound variable. If the variable
is not instantiated, an exception is raised.

#Fd.elt_value (Fd.int 1);;
- : Facile.Var.Fd.elt = 1

#Fd.elt_value (Fd.interval 0 1);;
Exception: Failure "Fatal error: Var.XxxFd.elt_value: unbound variable: _3".

2.3 Arithmetic Expressions

Arithmetic expressions and constraints over finite domain variables are built with functions and
operators of module Arith (see ??).

Creation and Access

Arithmetic expressions are objects of abstract type Arith.t which contain a representation of an
arithmetic term over finite domain variables. An expression is ground when all the variables used
to build it are bound; in such a state an expression can be “evaluated” with function Arith.eval
which returns its unique integral value. A call to Arith.eval with an expression that is not
ground raises the exception Invalid_argument. However, any expression can be printed on an
output channel with function Arith.fprint.

A variable of type Fd.t or an OCaml integer of type int are not arithmetic expressions and
therefore cannot be mixed up with the latter. “Conversion” functions are provided by module
Arith to build an expression from variables and integers:

• Arith.i2e n returns an expression which evaluates to integer n;

• Arith.fd2e v returns an expression which evaluates to n when v is bound to n.

2Comparison functions return 0 if both arguments are equal, a positive integer if the first is greater than the
second and a negative one otherwise (as specified in the OCaml standard library).
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Handily enough, opening module Easy allows direct access to most useful functions and operators
of module Arith, including i2e and fd2e:

#let v1 = Fd.interval 2 5;;
val v1 : Facile.Var.Fd.t = <abstr>

#let exp1 = fd2e v1;;
val exp1 : Facile.Arith.t = <abstr>

#Arith.fprint stdout exp1;;
_4[2-5]- : unit = ()

#Arith.eval exp1;;
Exception: Failure "Fatal error: Expr.eval: variable _4 unknown".

#Fd.unify v1 4;;
- : unit = ()

#Arith.eval exp1;;
- : int = 4

#Arith.fprint stdout (i2e 2);;
2- : unit = ()

Maximal and minimal values of expressions can be accessed by functions Arith.max_of_expr
and Arith.min_of_expr:

#let exp2 = fd2e (Fd.interval (-3) 12);;
val exp2 : Facile.Arith.t = <abstr>

#Arith.min_of_expr exp2;;
- : int = -3

#Arith.max_of_expr exp2;;
- : int = 12

Conversely, an arithmetic expression can be transformed into a variable thanks to function
Arith.e2fd which creates a new variable constrained to be equal to its argument (see 2.4.2).

Operators

Module Arith provides classic linear and non-linear arithmetic operators to build complex expres-
sions. Most frequently used ones can be directly accessed through the opening of module Easy,
which considerably ligthen the writing of equations, especially for binary infix operators.

• +~, -~, *~, /~: addition, substraction, multiplication and division (the exception
Division_by_zero is raised whenever its second argument evaluates to 0).

• e **~ n raises e to the nth power, where n is an integer.

• x %~ y: modulo. The exception Division_by_zero is raised whenever y evaluates to 0.

• Arith.abs: absolute value.

#let vx = Fd.interval ~name:"x" 3 6 and vy = Fd.interval ~name:"y" 4 12;;

#let exp1 = i2e 2 *~ fd2e vx -~ fd2e vy +~ i2e 3;;
val exp1 : Facile.Arith.t = <abstr>

#Arith.fprint stdout exp1;;
3 + -y[4-12] + 2 * x[3-6]- : unit = ()
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#Arith.min_of_expr exp1;;
- : int = -3

#Arith.max_of_expr exp1;;
- : int = 11

Global arithmetic operators working on array of expressions are provided as well:

• Arith.sum exps builds the sum of all the elements of the array of expressions exps.

• Arith.scalprod ints exps builds the scalar products of an array of integers by an array
of expressions. Arith.scalprod raises Invalid_argument if the two arrays have not the
same length.

• Arith.prod exps builds the product of all the elements of the array of expressions exps.

Their variable counterparts where the array of expressions is replaced by an array of variables are
defined as well: Arith.sum_fd, Arith.scalprod_fd, Arith.prod_fd. Note that Arith.sum_fd a,
for example, is simply defined as Arith.sum (Array.map fd2e a).

#let size = 5;;
val size : int = 5

#let coefs = Array.init size (fun i -> i+1);;
val coefs : int array = [|1; 2; 3; 4; 5|]

#let vars = Fd.array size 0 9;;
val vars : Facile.Var.Fd.t array =

[|<abstr>; <abstr>; <abstr>; <abstr>; <abstr>|]

#let pscal_exp = Arith.scalprod_fd coefs vars;;
val pscal_exp : Facile.Arith.t = <abstr>

#Arith.fprint stdout pscal_exp;;
1 * _8[0-9] + 2 * _9[0-9] + 3 * _10[0-9] + 4 * _11[0-9] + 5 * _12[0-9]- : unit =

()

#Arith.min_of_expr pscal_exp;;
- : int = 0

#Arith.max_of_expr pscal_exp;;
- : int = 135

2.4 Constraints

2.4.1 Creation and Use

A constraint in FaCiLe is a value of type Cstr.t. It can be created by a built-in function (arith-
metic, global constraints) or user-defined (see 3.3). A constraint must be posted with the function
Cstr.post to be taken into account, i.e. added to the constraint store. The state of the system
can then be accessed by a call to the function Cstr.active_store which returns the list of all
constraints still “unsolved”, i.e. not yet globally consistent.

When a constraint is posted, it is attached to the involved variables and activated: propagation
occurs as soon as the constraint is posted. Consequently, if an inconsistency is detected prior to
the search, i.e. before the call to Goals.solve (see 2.5), a Stak.Fail exception is raised. However,
inconsistencies generally occur during the search so that failures are caught by the goal solving
mechanism of FaCiLe which will backtrack until the last choice-point.
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Constraints basically perform domain reductions on their involved variables, first when posted
and then each time that a particular “event” occurs on their variables. An event corresponds to a
domain reduction on a variable: the minimal or maximal value has changed, the size of the domain
has decreased or the variable has been bound. All these kinds reduction cause different events to
trigger the “awakening” of the appropriate constraints. See 3.2.1 for a more precise description of
this event-driven mechanism.

Constraints can also be printed on an output channel with function Cstr.fprint which usually
yields useful information about the variables involved and/or the name of the constraint.

2.4.2 Arithmetic Constraints

The simplest and standard constraints are relations on arithmetic expressions (c.f. 2.3):

• equality =~

• strict and non-strict inequality <~, >~, <=~, >=~

• disequality <>~

FaCiLe provides them as infix operators suffixed with the ~ character, similarly to expression
operators. These operators are declared in the Easy module and don’t need module prefix notation
whenever Easy is opened. The small example below uses the equality operator =~ and points out
the effect on the variables domains of posting the constraint equation:

#(* 0<=x<=10, 0<=y<=10, 0<=z<=10 *)
#let x = Fd.interval 0 10 and y = Fd.interval 0 10 and z = Fd.interval 0 10;;

#let equation = (* x*y - 2*z >= 90 *)
#fd2e x *~ fd2e y -~ i2e 2 *~ fd2e z >=~ i2e 90;;
val equation : Facile.Cstr.t = <abstr>

#(* before propagation has occurred *)
#Cstr.fprint stdout equation;;
3: +2._15[0-10] -1._16[0-100] <= -90- : unit = ()

#Cstr.post equation;;
- : unit = ()

#(* after propagation has occurred *)
#Cstr.fprint stdout equation;;
3: +2._15[0-5] -1._16[90-100] <= -90- : unit = ()

Notice that the output of the Cstr.fprint function does not look exactly like the stated inequation
but gives a hint about how the two operands of the main sum are internally reduced into new
single variables constrained to be equal to the latters. This mechanism is of course hidden to the
user and is only unfolded when using the pretty-printer.

FaCiLe compiles and simplifies (“normalizes”) arithmetic constraints as much as possible so
that variables and integers may be scattered inside an expression with no loss of efficiency. There-
fore the constraint ineq1:

#let x = Fd.interval (-2) 6 and y = Fd.interval 4 12;;

#let xe = fd2e x and ye = fd2e y;;

#let ineq1 = i2e 3 *~ ye +~ i2e 2 *~ xe *~ ye *~ i2e 5 *~ xe +~ ye >=~ i2e 4300;;
val ineq1 : Facile.Cstr.t = <abstr>

#Cstr.fprint stdout ineq1;;
6: -4._18[4-12] -10._20[0-432] <= -4300- : unit = ()
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which ensures 3y + (2xy × 5x) + y ≥ 4300, i.e. 10x2y + 4y ≥ 4300, is equivalent to ineq2:

#let ineq2 = i2e 10 *~ (xe **~ 2) *~ ye +~ i2e 4 *~ ye >=~ i2e 4300;;
val ineq2 : Facile.Cstr.t = <abstr>

#Cstr.fprint stdout ineq2;;
9: -4._18[4-12] -10._22[0-432] <= -4300- : unit = ()

Once posted, ineq1 or ineq2 incidentally yield a single solution:

#Printf.printf "x=%a y=%a\n" Fd.fprint x Fd.fprint y;;
x=_17[-2-6] y=_18[4-12]

- : unit = ()

#Cstr.post ineq1;;
- : unit = ()

#Printf.printf "x=%a y=%a\n" Fd.fprint x Fd.fprint y;;
x=6 y=12

- : unit = ()

It is also worth mentioning that arithmetic constraints involving (large enough) sums of boolean
variables are automatically detected by FaCiLe and handled internally by a specific efficient mech-
anism. The user may thus be willing to benefit from these features by choosing a suitable problem
modeling. This automatic behaviour can be tuned by specifying the minimum size from which the
constraint is optimized (see ??).

Note on Overflows

Users should be carefull when expecting the arithmetic solver to compute bounds from variables
with very large domain, that means with values close to max_int or min_int (depending on the
system and architecture). Especially with exponentiation and multiplication, an integer overflow
may occur which will yield an error message (”Fatal error: integer overflow”) on stderr and an
exception (Assert_failure) if the program is compiled in byte code. A spurious calculation
(probably leading to a failure during propagation) will happen if it is compiled in native code.
An unexpected behaviour when performing such operations in native code should thus always be
checked against the safer byte code version.

2.4.3 Global Constraints

Beside arithmetic constraints, FaCiLe provides so-called “global constraints” which express a re-
lation on a set of variables. They are defined in separate modules in which a function (and
possibly several variants) usually named cstr yields the constraint; these functions takes an array
of variables as their main argument.

The most famous one is probably the “all different” constraint which expresses that all the
elements of an array of variables must take different values. This constraint is invoked by the
function Alldiff.cstr ?algo vars where vars is an array of variables and ?algo an optional
argument (of type Alldiff.algo) that controls the efficiency of the constraint (see ??):

• Lazy waits for the instantiation of a variable and then removes the chosen value from the
domains of the remaining variables;

• Bin_matching evt uses a more sophisticated algorithm (namely a “bin matching” [5]) which
is called whenever the event evt (see 3.2.1) occurs on one of the variables to globally check
the satisfiability of the constraint.
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#let vars = Fd.array 5 0 4;;
val vars : Facile.Var.Fd.t array =

[|<abstr>; <abstr>; <abstr>; <abstr>; <abstr>|]

#let ct = Alldiff.cstr vars;;
val ct : Facile.Cstr.t = <abstr>

#Fd.fprint_array stdout vars;;
[|_23[0-4]; _24[0-4]; _25[0-4]; _26[0-4]; _27[0-4]|]- : unit = ()

#Cstr.post ct; Fd.unify vars.(0) 3;;
- : unit = ()

#Fd.fprint_array stdout vars;;
[|3; _24[0-2;4]; _25[0-2;4]; _26[0-2;4]; _27[0-2;4]|]- : unit = ()

Module FdArray provides the “element” constraint named FdArray.get which allows to index
an array of variables by a variable, and the min (resp. max) constraint which returns a variable
constrained to be equal to the variable that will instantiate to the minimal (resp. maximal) value
among the variables of an array:

#let vars = [|Fd.interval 7 12; Fd.interval 2 5; Fd.interval 4 8|];;
val vars : Facile.Var.Fd.t array = [|<abstr>; <abstr>; <abstr>|]

#let index = Fd.interval (-10) 10;;
val index : Facile.Var.Fd.t = <abstr>

#let vars_index = FdArray.get vars index;;
val vars_index : Facile.Var.Fd.t = <abstr>

#Fd.fprint stdout index;;
_31[0-2]- : unit = ()

#Fd.fprint stdout vars_index;;
_32[2-12]- : unit = ()

#let mini = FdArray.min vars;;
val mini : Facile.Var.Fd.t = <abstr>

#Fd.fprint stdout mini;;
_33[2-5]- : unit = ()

FdArray.get and FdArray.min, which produce a new variable (and thus hide an underlying
constraint), also have their “constraint” counterpart FdArray.get_cstr and FdArray.min_cstr
which take an extra variable as argument and return a constraint of type Cstr.t that must be
posted to be effective: FdArray.min_cstr vars mini is therefore equivalent to the constraint:

fd2e (FdArray.min vars) =~ fd2e mini,

and FdArray.get cstr vars index v to:

fd2e (FdArray.get vars index) =~ fd2e v.

More sophisticated global constraints are available as well as FaCiLe built-in constraints:

• the global cardinality constraint [9] (a.k.a. “distribute” constraint): Gcc.cstr (see ??);

• the sorting constraint [3]: Sorting.cstr (see ??).
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2.4.4 Reification

FaCiLe constraints can be “reified” thanks to the Reify module and its function Reify.boolean
(see ??) which takes an argument of type Cstr.t and returns a new boolean variable. This
boolean variable is interpreted as the truth value of the relation expressed by the constraint and
the following equivalences hold:

• the boolean variable is bound to 1 iff the constraint is satisfied, and the constraint is there-
after posted;

• the boolean variable is bound to 0 iff the constraint is violated, and the negation of the
constraint is thereafter posted;

otherwise, i.e. it is not yet known if the constraint is satisfied or violated and the boolean variable
is not instantiated, the reification of a constraint does not perform any domain reduction on the
variables involved.

In the following example, the boolean variable x_less_than_y is constrained to the truth value
of the inequation constraint x < y:

#let x = Fd.interval 3 6 and y = Fd.interval 5 8;;
val x : Facile.Var.Fd.t = <abstr>

val y : Facile.Var.Fd.t = <abstr>

#let x_less_than_y = Reify.boolean (fd2e x <~ fd2e y);;
val x_less_than_y : Facile.Var.Fd.t = <abstr>

#Fd.fprint stdout x_less_than_y;;
_36[0-1]- : unit = ()

#Cstr.post (fd2e y >=~ i2e 7);;
- : unit = ()

#Fd.fprint stdout x_less_than_y;;
1- : unit = ()

#Fd.fprint stdout (Reify.boolean (fd2e x =~ fd2e y));;
0- : unit = ()

When posted, the reification of a constraint calls the check function (see 3.3) of the constraint,
which verifies whether it is satisfied or violated (without performing domain reduction). If it is
violated, the negation of the constraint is posted with a call to another function of the constraint
dedicated to reification, namely not (see 3.3). Both functions are always defined for all constraints
but their default behaviour is merely exception raising (Failure "Fatal error: ...") which
means that the constraint is actually not reifiable - as specified in the documentation of the
relevant constraints in the reference manual. Roughly, arithmetic constraints are reifiable (as well
as the “interval” constraint of module Interval, see ??) while others (global ones) are not.

Reified constraint are by default woken up with the events triggering its standard awakening
(i.e. as if it were directly posted) and those of its negation. This behaviour might possibly be too
time costly (for some specific problem) and the call to Reify.boolean with its optional argument
?delay_on_negation (see ??) set to false disables it, i.e. the events associated with the negation
of the constraint are ignored.

Module Reify also provides standard logical (most of them infix) operators over constraints:

• &&~~, conjunction;

• ||~~, disjunction;

• =>~~, implication;

• <=>~~, equivalence;
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• xor3, exclusive or;

• not3, negation.

These operators can be directly accessed through the opening of module Easy, except Reify.not
(for obvious reasons) and Reify.xor (which are not infix). Note that, unlike Reify.boolean,
these operators do not have a ?delay_on_negation optional argument, so that the constraints
they return will be woken by both the events of their arguments and those of the negations of
their arguments.

These operators can be combined to yield complex logical operators. For example, the “exclu-
sive or” may be redefined in the following way:

#let x = Fd.interval 3 5 and y = Fd.interval 5 7;;
val x : Facile.Var.Fd.t = <abstr>

val y : Facile.Var.Fd.t = <abstr>

#let xor ct1 ct2 = Reify.not (ct1 <=>~~ ct2) in
#let xor_cstr = xor (fd2e x =~ i2e 5) (fd2e y =~ i2e 5) in
#Cstr.post (xor_cstr);
#Cstr.post (fd2e x <=~ i2e 4);
#Printf.printf "x=%a y=%a\n" Fd.fprint x Fd.fprint y;;
x=_38[3-4] y=5

- : unit = ()

Furthermore, module Arith contains convenient shortcuts to reify its basic arithmetic con-
straints:

=~~, <>~~, <=~~, >=~~, <~~, >~~

These operators stand for the reification (and transformation into arithmetic expression) of their
basic counterparts, i.e. they take two arithmetic expressions as operands and yield a new arithmetic
expression being the boolean variable related to the truth value of the arithmetic constraint.
e1 =~~ e2 is therefore equivalent to

fd2e (Reify.boolean (e1 =~ e2))

These operators can also be directly accessed through the opening of module Easy. In the following
example, the constraint stating that at least two of the three variables contained in array vs must
be greater than 5 is expressed with the reified greater or equal >=~~:

#let vs = Fd.array 3 0 10;;
val vs : Facile.Var.Fd.t array = [|<abstr>; <abstr>; <abstr>|]

#Cstr.post (Arith.sum (Array.map (fun v -> fd2e v >~~ i2e 5) vs) >=~ i2e 2);
#Fd.fprint_array stdout vs;;
[|_40[0-10]; _41[0-10]; _42[0-10]|]- : unit = ()

If vs.(1) is forced to be less than 5, the two other variables become greater than 5:

#Cstr.post (fd2e vs.(1) <=~ i2e 5);
#Fd.fprint_array stdout vs;;
[|_40[6-10]; _41[0-5]; _42[6-10]|]- : unit = ()

3Not infix.
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2.5 Search

Most constraint models are not tight enough to yield directly a single solution, so that search
(and/or optimization) is necessary to find appropriate ones. FaCiLe uses goals to search for
solutions. All built-in goals and functions to create and combine goals are gathered in module
Goals (see ??). This section only introduces “ready-to-use” goals intended to implement basic
search strategies, but more experienced users shall refer to sections 3.1.2 and 3.4, where combining
goals with iterators and building goals from scratch are explained.

FaCiLe’s most standard labeling goals is Goals.indomain which instantiates non-determini-
stically a single variable by disjunctively trying each value still in its domain in increasing order.
To be executed, a goal must then be passed as argument to function Goals.solve which returns
true if the goal succeeds or false if it fails.

#let x = Fd.create (Domain.create [-4;2;12]);;
val x : Facile.Var.Fd.t = <abstr>

#Goals.solve (Goals.indomain x);;
- : bool = true

#Fd.fprint stdout x;;
-4- : unit = ()

So the first attempt to instantiate x (to -4) obviously succeeds.
The values of the domain of x can be enumerated with a slightly more sophisticated goal which

fails just after Goals.indomain. Module Goals provides Goals.fail, which is a goal that always
fails, and conjunction and disjunction operators, respectively &&~ and ||~ (which can be directly
accessed when module Easy is open), to combine simple goals. Hence such an enumeration goal
would look like:

Goals.indomain x &&~ Goals.fail

But the result of such a goal will be a failure and the state of the system (variable x not instan-
tiated) will not be restored. A simple disjunction of this goal with the goal that always succeeds,
Goals.success, yields the desirable behaviour:

(Goals.indomain x &&~ Goals.fail) ||~ Goals.success

In order to display the execution of this goal, a printing goal gprint_fd which prints a variable on
the standard output (but will not be detailed in this section, see 3.4.1) can eventually be inserted
(conjunctively) between indomain and fail:

#let x = Fd.create (Domain.create [-4;2;12]);;
val x : Facile.Var.Fd.t = <abstr>

#let goal = (Goals.indomain x &&~ gprint_fd x &&~ Goals.fail) ||~ Goals.success;;
val goal : Facile.Goals.t = <abstr>

#Goals.solve goal;;
-4 2 12 - : bool = true

Note that, unfortunately, the logical operators do have the same priority. Hence goals
expressions must be carefully parenthesized to produce the expected result.

Module Goals also provides the function Goals.instantiate that allows to specify the or-
dering strategy of the labeling. Goals.instantiate takes as first argument a function to which
is given the current domain of the variable (as single argument) and should return an integer
candidate for instantiation. Labeling of variable x in decreasing order is then merely:

#let label_and_print labeling v =
# (labeling v &&~ gprint_fd v &&~ Goals.fail) ||~ Goals.success;;
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val label_and_print :

(Facile.Var.Fd.t -> Facile.Goals.t) -> Facile.Var.Fd.t -> Facile.Goals.t =

<fun>

#Goals.solve (label_and_print (Goals.instantiate Domain.max) x);;
12 2 -4 - : bool = true

Function label_and_print is defined here to lighten the writing of enumeration goals (it takes
only the instantiation goal and the variable as arguments). In the example below, variable x is
labelled in increasing order of the absolute value of its values. Function Domain.choose allows to
only specify the relevant order:

#let goal =
# label_and_print
# (Goals.instantiate (Domain.choose (fun v1 v2 -> abs v1 < abs v2))) x;;
val goal : Facile.Goals.t = <abstr>

#Goals.solve goal;;
2 -4 12 - : bool = true

Beside non-deterministic instantiation, FaCiLe provides also Goals.unify to enforce the in-
stantiation of a variable (which might be already bound) to a given integer value:

#Goals.solve (Goals.unify x 2);;
- : bool = true

#Fd.fprint stdout x;;
2- : unit = ()

#Goals.solve (Goals.unify x 12);;
- : bool = false

#Goals.solve (Goals.unify (Fd.int 0) 0);;
- : bool = true

Search strategy Like most CP system, FaCiLe default standard strategy is Depth First Search.
However, FaCiLe now offers Limited Discrepancy Search [4] as well (see ??), and even if a general
mechanism to change the search strategy is not provided, skilled users are encouraged to plunder
and hack the source code of module Goals to devise new custom strategies themselves.

Floundering If the search goal does not instantiate all the variables involved in the posted
constraints, some of the constraints may still be unsolved when a solution is found, so that this
solution may be incorrect. To be sure that all the constraints have been solved, the user can use the
function Cstr.active_store and checks that the returned constraints list is empty. This checking
may be done after the completion of the search, i.e. after Goals.solve, or better, embedded
within the search goal. The latter allows to cleanly integrate this verification in optimization
and “findall” goals. A “non-floundering check” goal could be implemented in the following way
(function Goals.atomic used here to build a new atomic goal is explained in section 3.4.1):

#let check_floundering =
# Goals.atomic
# (fun () ->
# if Cstr.active_store () <> [] then
# failwith "Some constraints are still unsolved");;
val check_floundering : Facile.Goals.t = <abstr>

A simple conjunction with check_floundering at the end of the labeling goal will do the job.
Information about the alive constraints may be extracted as well, thanks to module Cstr access
functions (id, name, fprint).
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Early Backtrack With FaCiLe as in Prolog systems, any dynamic modification performed
within goals may be undone (backtracked) to restore the state of the system. However, no choice-
point is associated to the “root” of the constraint program, so that variables modifications oc-
curring before the call to Goals.solve can never be undone. As the standard way of adding
constraints with FaCiLe is to post them prior to the solving, i.e. statically outside goals, the
domain reductions initially made by these constraints are not backtrackable.

2.6 Optimization

Classic Branch & Bound search is provided by the function minimize of module Goals. It allows
to solve a specified goal (g) while minimizing a cost defined by a finite domain variable (c):

1. Goal g is solved and the cost must then be bound to a value cc, i.e. the current cost of the
current solution

2. Backtracking is performed to restore the state of the system as before the execution of g and
a new constraint stating c < cc is added to the constraint store

3. The process loops until goal fails

The third argument of Goals.minimize is a function solution : int -> unit called each
time a solution is found. The argument of solution is the current value of the cost cc which
must be instantiated by g. This function is handy to store the last solution and cost in references,
because Goals.minimize always fails, so that the decision and cost variables are restored as before
its execution by Goals.solve.

The following example solves the minimization of x2 + y2 while x + y = 10:

#let x = Fd.interval 0 10 and y = Fd.interval 0 10 in
#Cstr.post (fd2e x +~ fd2e y =~ i2e 10);
#let c = Arith.e2fd (fd2e x **~ 2 +~ fd2e y **~ 2) in
#let store = ref None in
#let solution cc =
# store := Some (cc, Fd.elt_value x, Fd.elt_value y);
# Printf.printf "Found %d\n" cc in
#let g = Goals.minimize (Goals.indomain x &&~ Goals.indomain y) c solution in
#if Goals.solve (g ||~ Goals.success) then
# match !store with
# None -> Printf.printf "No solution\n"
# | Some (best_c, best_x, best_y) ->
# Printf.printf "Optimal solution: cost=%d x=%d y=%d\n" best_c best_x best_y;;
Found 100

Found 82

Found 68

Found 58

Found 52

Found 50

Optimal solution: cost=50 x=5 y=5

- : unit = ()

Additionally, Goals.minimize has two optional arguments:

• ?step: the improvement between two consecutive solutions must be greater than step, i.e.
the constraint posted each time a solution is found is c ≤ cc − step; step default value is
obviously 1.
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• ?mode: may be either Goals.Restart or Goals.Continue (of type bb_mode); with mode
Restart, the search restarts from the beginning at each step, i.e. the system backtracks until
the very state prior to the execution of minimize, whereas with mode Continue the search
simply carries on with an update of the cost constraint. Default mode is Goals.Continue.

2.7 Constraint Programs on Finite Sets

CP can be parameterized by the mathematical structure on which to express variables and con-
straints. In (almost) the same way, FaCiLe uses the generic mechanism of functors to provide
variables either on integers domain or on finite sets (of integers) domain. Hence, the interface (of
type BASICFD, see ??) on which variables are built is the same for both types (and then further
extended for integer ones), once parameterized by the Domain module, and once by the SetDomain
one.

So the few previous sections are relevant to document set variables and constraints. Specific
issues are discussed below.

2.7.1 Set Domains

The standard Domain module builds domain (of type Domain.t) from its basic elements, integers,
whose type is aliased as Domain.elt. Similarly, the SetDomain module builds domain of type
SetDomain.t from basic elements, set of integers with type SetDomain.elt. The latter type
simply is an alias for type SetDomain.S.t of module SetDomain.S which provides values and
functions to build and handle elements of SetDomain (see ??).

Set domains represent sets of integers sets. They are described as powerset lattices of sets
bounded by its definite elements, the glb (Greater Lower Bound) and possible elements lub
(Lower Upper Bound). So the glb corresponds to the min value of an integer domain while the
lub corresponds to its max.

Figure 2.1 illustrates the representation of the following domain :

#let glb = SetDomain.elt_of_list [1;2];;
val glb : Facile.SetDomain.elt = <abstr>

#let lub = SetDomain.elt_of_list [1;2;3;4;5];;
val lub : Facile.SetDomain.elt = <abstr>

#let sd = SetDomain.interval glb lub;;
val sd : Facile.SetDomain.t = <abstr>

#SetDomain.fprint stdout sd;;
{ 1 2 }..{ 1 2 3 4 5 }- : unit = ()

Note that the glb must be included in the lub, and that ”holes” cannot be represented at the
domain level.

2.7.2 Set Variables

The module defining set variables, SetFd, shares its interface with module of integer variables Fd:

#let sv = Var.SetFd.interval ~name:"sv" glb lub;;
val sv : Facile.Var.SetFd.t = <abstr>

#Var.SetFd.fprint stdout sv;;
sv{ 1 2 }..{ 1 2 3 4 5 }- : unit = ()

#Var.SetFd.unify sv (SetDomain.S.empty);;
Exception: Fcl_stak.Fail "Var.XxxFd.subst".
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{1,2,4}{1,2,3} {1,2,5}

{1,2,3,4,5}

{1,2,3,4} {1,2,3,5} {1,2,4,5}

{1,2}

inclusion

glb

lub

Figure 2.1: Lattice of a set domain

However, specific (convenient) set operations (and constraints) are located in module Conjunto:

#Conjunto.inside 5 sv;;
- : unit = ()

#Var.SetFd.fprint stdout sv;;
sv{ 1 2 5 }..{ 1 2 3 4 5 }- : unit = ()

2.7.3 Constraints

Constraints on set variables can be found in module Conjunto (see ??). Set operators like union,
intersection, subset... are provided, as well as operators involving integer variables like cardinality
or membership. The following example defines a fixed set super and its 2-partition as sets sub1
and sub2. It uses the union, disjoint and cardinal constraints of module Conjunto:

#let lub = SetDomain.elt_of_list [1;2];;
val lub : Facile.SetDomain.elt = <abstr>

#let super = Var.SetFd.interval lub lub;;
val super : Facile.Var.SetFd.t = <abstr>

#let sub1 = Var.SetFd.interval SetDomain.S.empty lub
#and sub2 = Var.SetFd.interval SetDomain.S.empty lub;;
val sub1 : Facile.Var.SetFd.t = <abstr>

val sub2 : Facile.Var.SetFd.t = <abstr>

#let card = Conjunto.cardinal (Conjunto.union sub1 sub2);;
val card : Facile.Var.Fd.t = <abstr>

#Cstr.post (Conjunto.disjoint sub1 sub2);;
- : unit = ()

#Cstr.post (fd2e card =~ i2e (SetDomain.S.cardinal lub));;
- : unit = ()

2.7.4 Labeling

A specific goal is provided within module Goals.Conjunto to non-deterministically instantiate set
variables. The following example enumerates and prints the 2-partitions of set super:
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#let print () =
# Printf.printf "sub1=%a sub2=%a\n" Var.SetFd.fprint sub1 Var.SetFd.fprint sub2 in
#let g =
# Goals.Conjunto.indomain sub1 &&~ Goals.Conjunto.indomain sub2
# &&~ Goals.atomic print &&~ Goals.fail in
#ignore (Goals.solve g);;
sub1={ } sub2={ 1 2 }

sub1={ 2 } sub2={ 1 }

sub1={ 1 } sub2={ 2 }

sub1={ 1 2 } sub2={ }

- : unit = ()



Chapter 3

Advanced Usage

3.1 Search Control

3.1.1 Basic Mechanisms

FaCiLe implements a standard depth-first search with backtracking. OR control is handled with
a stack (module Stak), while AND control is handled with continuations.

OR control can be modified with a cut à la Prolog: a level is associated to each choice-point
(node in the search tree) and choice-points created since a specified level can be removed, i.e. cut
(functions Stak.level and Stak.cut).

OR and AND controls are implemented by the Goals.solve function. AND is operationally
mapped on the imperative sequence. OR is based on the exception mechanism: backtrack is
caused by the exception Stak.fail which is raised by failing constraints. Note that this exception
is caught and handled by the Goals.solve function only.

3.1.2 Combining Goals with Iterators

Functional programming allows the programmer to compose higher-order functions using iterators.
An iterator is associated to a datatype and is the default control structure to process a value in the
datatype. There is a strong isomorphism between the datatypes and the corresponding iterators
and this isomorphism is a simple guideline to use them.

Imitating the iterators of the standard OCaml library, FaCiLe provides iterators for arrays
and lists. While standard Array and List modules allows to construct sequences (with a ’;’) of
imperative functions (type ’a -> unit), Goals.Array and Goals.List modules of FaCiLe allows
to construct conjunction (with a &&~) and disjunction (with a ||~) of goals (type Goals.t).

The simplest iterator operates on integers and provides a standard for-to loop by applying a
goal to consecutive integers:

Goals.forto 3 7 g = (g 3) &&~ (g 4) &&~ ... &&~ (g 7)

Of course, iterators may be composed, as is illustrated below, where the cartesian product [1..3]×
[4..5] is deterministically enumerated:

#let enum_couples =
# Goals.forto 1 3
# (fun i ->
# Goals.forto 4 5
# (fun j ->
# Goals.atomic (fun () -> Printf.printf "%d-%d\n" i j))) in
#Goals.solve enum_couples;;
1-4

27
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1-5

2-4

2-5

3-4

3-5

- : bool = true

Function Goals.atomic (used in the previous example), which builds an “atomic” goal (i.e. a
goal which returns nothing), is detailed in section 3.4.1.

Arrays: module Goals.Array

Standard Loop The polymorphic Goals.Array.forall function applies uniformally a goal
to every element of an array, connecting them with a conjunction (&&~).

Goals.Array.forall g [|e1; e2; ...; en|] = (g e1) &&~ (g e2) &&~ ... &&~ (g en)

Labeling of an array of variables is the iteration of the instantiation of one variable (Goals.indomain):

#let labeling_array = Goals.Array.forall Goals.indomain;;
val labeling_array : Facile.Var.Fd.t array -> Facile.Goals.t = <fun>

A matrix is an array of arrays; following the isomorphism, labeling of a matrix must be simply
a composition of the array iterator:

#let labeling_matrix = Goals.Array.forall labeling_array;;
val labeling_matrix : Facile.Var.Fd.t array array -> Facile.Goals.t = <fun>

Changing the Order An optional argument of Goals.Array.forall, labelled ?select, gives
the user the possibility to choose the order in which the elements are considered. ?select is a
function which is applied to the array by the iterator and which must return the index of one
element on which the goal is applied. This function must raise the exception Not_found to stop
the loop.

For example, if we want to apply the goal only on the unbound variables of an array, we may
write:

#let first_unbound array =
# let n = Array.length array in
# let rec loop i = (* loop until free variable found *)
# if i < n then
# match Fd.value array.(i) with
# Unk _ -> i
# | Val _ -> loop (i+1)
# else
# raise Not_found in
# loop 0;;
val first_unbound : Facile.Easy.Fd.t array -> int = <fun>

#let forall_unbounds = Goals.Array.forall ~select:first_unbound;;
val forall_unbounds :

(Facile.Easy.Fd.t -> Facile.Goals.t) ->

Facile.Easy.Fd.t array -> Facile.Goals.t = <fun>

Note that the function forall is polymorphic and can be used for an array of any type.
The function Goals.Array.choose_index facilitates the construction of heuristic functions

that may be provided to the forall ?select argument. It constructs such a function from an
ordering function on variable attributes (free variables are ignored). For example, the standard
“min size” strategy will be implemented as follows:
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#let min_size_order =
# Goals.Array.choose_index (fun a1 a2 -> Var.Attr.size a1 < Var.Attr.size a2);;
val min_size_order : Facile.Var.Fd.t array -> int = <fun>

#let min_size_strategy = Goals.Array.forall ~select:min_size_order;;
val min_size_strategy :

(Facile.Var.Fd.t -> Facile.Goals.t) ->

Facile.Var.Fd.t array -> Facile.Goals.t = <fun>

#let min_size_labeling = min_size_strategy Goals.indomain;;
val min_size_labeling : Facile.Var.Fd.t array -> Facile.Goals.t = <fun>

Note that module Goals.Array also provides a disjunctive iterator, exists, which has the
same profile than forall. Variants Goals.Array.foralli and Goals.Array.existsi allow to
specify goals which take the index of the relevant variable as an extra argument (like the OCaml
standard library iterator Array.iteri).

Lists: module Goals.List

FaCiLe Goals.List module provides similar iterators for lists except of course iterators which
involve index of elements.

3.2 Constraints Control

Constraints may be seen operationally as “reactive objects”. They are attached to variables, more
precisely to events related to variable modifications. A constraint mainly is an update function
(responsible for performing propagations) which is called when the constraint is woken because
a specific event occured. Events are queued according to the priority of the constraint, and the
search control is resumed as soon as all queues are emptied.

3.2.1 Events

An event (of type Var.Fd.event) is a modification of the domain of a variable. FaCiLe currently
provides four specific events:

• Modification of the domain (on_refine);

• Substitution of the variable, i.e. reduction of the domain to a singleton (on_subst);

• Modification of the minimum value of the domain (on_min);

• Modification of the maximum value of the domain (on_max).

Note that these events are not independant and constitute a lattice which top is on_subst and
bottom is on_refine:

• on_subst implies all other events1;

• on_min and on_max imply on_refine.

Constraints are attached to the variables through these events, thanks to the Var.Fd.delay2

function. In concrete terms, lists of constraints (one per event) are put in the attribute of the
variable. Note that this attachement occurs only when the constraint is posted.

1It means that, e.g. the event on min occurs even if a variable is instantiated to its minimum value.
2Or Var.SetFd.delay for set variables.
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3.2.2 Suspending to Events, Waking Identity

Constraints are suspended to events by invoking the delay function wich takes an events list and
an optional integer waking identity as parameters (in addition to the constraint itself and to the
variable triggering the events of course). When posted, the constraint will be registered to all the
events appearing in the events list, along with the waking identity. This integer will be passed to
the update function whenever one of the events in the list occurs. It allows to dicriminate the
event and/or the variable responsible for the wakening, so as to fire a specific rule without having
to inspect all the variables to find out the culprit.

A typical use of waking identities is in global constraints that takes an array of variables as
parameter. The index of the variable can be associated to the event(s) on which the constraint
is suspended and the update function may avoid traversing the entire array to compute the
propagation.

The use of a waking identity is optional and 0 is assumed (default value) if the parameter
is omitted. However, if this feature is used, the identities must be consecutive integers ranging
from 0 to n− 1, and n, the number of distinct wakings, must be passed as an optional parameter
(labelled nb_wakings) to the Cstr.create function. Actually, an array of size n is internally build
to record the result of the calls to update with each identity. The constraint is solved when all
such calls have returned true (see 3.3).

3.2.3 Wakening, Queuing, Priorities

When an event occurs, related constraints are woken and put in a queue. The queue is processed
after each sequence of waking. This processing is protected against reentrance. Constraints
are considered one after the other and each update function is called to perform propagation.
Propagation may fail by raising an exception or succeed. The propagation of one constraint is
also protected against being woken again by itself.

When a constraint is triggered, the update function does not know by which event, nor gets
information about the variable responsible of it.

A constraint is woken only once by two distinct events. Note also that the waking queue
contains constraints and not variables.

FaCiLe implements three ordered queues and ensures that a constraint in a lower queue is
not propagated before a constraint present in a higher queue. The queue is chosen according to
the priority of a constraint (abstract type Cstr.priority). The priority is specified when the
constraint is defined (see 3.3). It can be changed neither when the constraint is posted nor later.
Priorities are defined in module Cstr: immediate, normal or later.

3.2.4 Constraint Store

FaCiLe handles the constraint store of all the posted and active constraints (a constraint becomes
inactive if it is solved, i.e. if its update function returns true, see 3.3). For debugging purpose,
this store can be consulted using the function Cstr.active_store and the returned constraints
list may be processed using constraints (of type Cstr.t) access functions (Cstr.id, Cstr.name
and Cstr.fprint).

3.3 User’s Constraints

The Cstr.create function allows the user to build new constraints from scratch. This function
may take up to eight arguments to precisely control the behaviour of the resulting constraint :

#Cstr.create;;
- : ?name:string ->

?nb_wakings:int ->

?fprint:(out_channel -> unit) ->
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?priority:Facile.Cstr.priority ->

?init:(unit -> unit) ->

?check:(unit -> bool) ->

?not:(unit -> Facile.Cstr.t) ->

(int -> bool) -> (Facile.Cstr.t -> unit) -> Facile.Cstr.t

= <fun>

However, to define a new simple3 constraint, very few arguments must be passed to the create
function as numbers of them are optional (thus labelled) and have default values. Merely the two
following arguments are actually needed to build a new constraint by evaluating Cstr.create update delay:

• update should perform propagation (domains filtering and consistency checks). It must
return true iff the constraint is consistent, raise Stak.Fail whenever an inconsistency is
detected and return false otherwise. Its integer parameter should be ignored (as in the
first example below) if waking ids are not used (as 0 will consistently be fed as argument).

• delay schedules the awakening of the constraint, i.e. the execution of its [update] function.
The delay argument takes only one argument ct, which is the constraint itself. To specify
on which events the constraint is to be woken, this function must call Var.XxxFd.delay
(once or several times) as shown in the example below. This latter function takes an events
list, a variable and the constraint ct as parameters and returns () (unit).

However we recommend to name new constraints and precise their printing facilities, which
may obviously help debugging, by specifying the following two optional arguments:

• ?name should be a relevant string describing the purpose of the constraint;

• ?fprint to print more accurate information on the constraint state (variables domains,
maintained data structures values...).

To define a reifiable constraint, two additional optional arguments must also be specified:

• ?check should return true if the constraint is entailed, false if its negation is entailed and
raise the exception DontKnow otherwise. check is called when the constraint is reified and
should not therefore perform any domain modification.

• ?not should return the negation of the constraint (which is a constraint itself). It is called
when the negation of a reified constraint is entailed, and to access the waking conditions
of the negation of a constraint when its reification is posted (and the optional argument
?delay_on_negation of Reify.boolean is set to true - which is its default value). Logical
operators of module Reify also call the ?not function for the same purpose (see 2.4.4).

To be able to use waking identities, their number must be specified:

• ?nb_wakings default value is 1. This optional argument is used in conjonction with waking
identities specified in the delay argument. If (contiguous) waking ids 0 to n − 1 are used,
~nb_wakings:n must be passed to Cstr.create.

Finally two other optional arguments may be specified:

• ?priority should be passed to the create function to precise the priority of the new con-
straint in the constraints queue. Constraints with lower priority are waken only when there is
no more constraint of higher priority in the waking queue. Time costly constraints should get
a later while quick elementary constraints should be immediate, and standard constraints
normal (default value).

3That is unreifiable and without the use of waking identities.
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• ?init is executed as soon as the post function is called on the constraint to perform ini-
tialization of inner data structures needed by update (thus not called when dealing with a
reified constraint). The default and intended behaviours of init are a bit intricate when
using waking identities. Its detailed use is explained in the next paragraphs with the help
of two examples. The default behaviours of init is:

– to call update 0 and ignores its result, when nb_wakings is equal to 1 (which is its
default value);

– to do nothing (fun () -> ()) when nb_wakings is greater than 1.

If this is not the desired behaviour, the init argument must be specified.

Example of reifiable constraints The example below defines a new constraint stating that
variable x should be different from variable y. This constraint specifies an optional name and an
optional printing function. It suspends itself to instantiation events of its two variables (without
using any waking identity). Its update function ignores its integer argument (update _ = ...)
and withdraws the instantiation value of one of its variable in the domain of the other. This
constraint is reifiable as the check and not functions are specified.

Note that no optional init function is provided, neither any nb_wakings argument: in this
case, the default behaviour of init will be to call update 0. The init function is the first
function to be called as soon as the constraint is posted, and its usual intended role is to perform
an initial propagation and possibly initialize internal data structures of the constraint. This is
what happens in this first example. However, if the constraint is suspended on an instantiation
event (XxxFd.on_subst), and the update function relies on the fact that it will only be called
when the variable is instantiatied (e.g. without testing that the variable is effectively bound), then
the default init behaviour is not appropriate. Use a specific init function instead by providing
this optional argument to Cstr.create, as shown in the second example (that uses waking ids).

diff.ml

open Facile
open Easy

let cstr x y =
let name = "different" in
let fprint c =
Printf.fprintf c "%s: %a <> %a\n" name Fd.fprint x Fd.fprint y

and delay ct =
(* The constraint is suspended on the instantiation of x or y. *)
Fd.delay [Fd.on_subst] x ct;
Fd.delay [Fd.on_subst] y ct

and update _ =
(* If one of the two variables is instantiated, its value is

removed in the domain of the other variable. *)
if Fd.is_bound x then
begin Fd.remove y (Fd.elt_value x); true end

else if Fd.is_bound y then
begin Fd.remove x (Fd.elt_value y); true end

else false
and check () = (* Consistency check for reified constraints. *)
match (Fd.value x, Fd.value y) with
(Val a, Val b) -> a <> b

| (Val a, Unk attr_y) when not (Var.Attr.member attr_y a) -> true
| (Unk attr_x, Val b) when not (Var.Attr.member attr_x b) -> true
| (Unk attr_x, Unk attr_y) when
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(* If the intersection of domains is empty, the constraint is satisfied. *)
let dom_x = Var.Attr.dom attr_x and dom_y = Var.Attr.dom attr_y in
Domain.is_empty (Domain.intersection dom_x dom_y) -> true

| _ -> raise Cstr.DontKnow
and not () = fd2e x =~ fd2e y in (* Negation for reification. *)
(* Creation of the constraint. *)
Cstr.create ~name ~fprint ~check ~not update delay

Let’s compile the file:

ocamlc -c -I +facile diff.ml

and use the produced object:

##load "diff.cmo";;

#let x = Fd.interval 1 2 and y = Fd.interval 2 3;;
val x : Facile.Easy.Fd.t = <abstr>

val y : Facile.Easy.Fd.t = <abstr>

#let diseq = Diff.cstr x y;;
val diseq : Facile.Cstr.t = <abstr>

#Cstr.post diseq;;
- : unit = ()

#let goal =
# Goals.indomain x &&~ Goals.indomain y
# &&~ Goals.atomic (fun () -> Cstr.fprint stdout diseq)
# &&~ Goals.fail in
#while (Goals.solve goal) do () done;;
2: different: 1 <> 2

2: different: 1 <> 3

2: different: 2 <> 3

- : unit = ()

Another example to test the reification function check:

#let x = Fd.create (Domain.create [1;3;5])
#and y = Fd.create (Domain.create [2;4;6]);;
val x : Facile.Easy.Fd.t = <abstr>

val y : Facile.Easy.Fd.t = <abstr>

#let reified_diseq = Reify.boolean (Diff.cstr x y);;
val reified_diseq : Facile.Var.Fd.t = <abstr>

#Fd.fprint stdout reified_diseq;;
1- : unit = ()

Variables x and y have disjoint domains, so the boolean variable reified_diseq is instantiated
to 1 as expected.

Example of constraints using waking identities The above example could benefit from
the use of waking ids, avoiding the cost of testing which variable has been instantiated within
the update function. The next example features such a disequality constraint. The delay func-
tion must now specify a waking id (argument waking_id) along with its associated events list
and variable. These ids must form an interval ranging from 0 to a given n − 1, and its size n
must be provided to the Cstr.create function through its optional nb_wakings argument4. The

4As correctly guessed by the reader, these ids are used to access an internal array.
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update function now makes use of this information (argument id) and performs the appropriate
propagation depending on which waking event has occurred. This function must return true if
the constraint is satisfied for this particular event and false otherwise. The constraint will be
satisfied only when all the calls to update 0, ..., update (n-1) have returned true.

In this example, we must provide an init function as well, because the nb_wakings argument
is greater than 1 and the default behaviour of init is then to do nothing. But the constraint should
propagate at post time, so an appropriate init function (which incidentally calls the update one)
is provided.

diffid.ml

open Facile
open Easy

let cstr x y =
let delay ct = (* Ids are associated with waking events. *)
Fd.delay [Fd.on_subst] x ~waking_id:0 ct;
Fd.delay [Fd.on_subst] y ~waking_id:1 ct

and update id =
begin (* Update function using waking ids. *)
match id with

0 -> Fd.remove y (Fd.elt_value x)
| 1 -> Fd.remove x (Fd.elt_value y)
| _ -> failwith "Diff_if.cstr: unexpected waking id"

end;
true in

let init () =
(* Update should be called if x or y is already bound when posting

the constraint. This is the job of the init function. *)
if not (Fd.is_var x) then ignore (update 0)
else if not (Fd.is_var y) then ignore (update 1) in

(* Creation of the constraint with 2 waking ids. *)
Cstr.create ~nb_wakings:2 ~init update delay

3.4 User’s Goals

3.4.1 Atomic Goal: Goals.atomic

The simplest way to create a deterministic atomic goal is to use the Goals.atomic function which
“goalifies” any unit function (i.e. of type unit -> unit).

Let’s write the goal which writes a variable on the standard output:

#let gprint_fd x = Goals.atomic (fun () -> Printf.printf "%a\n" Fd.fprint x);;
val gprint_fd : Facile.Easy.Fd.t -> Facile.Goals.t = <fun>

To instantiate a variable inside a goal, we may write the following definition:

#let unify_goal x v = Goals.atomic (fun () -> Fd.unify x v);;
val unify_goal : Facile.Easy.Fd.t -> Facile.Easy.Fd.elt -> Facile.Goals.t =

<fun>

#let v = Fd.interval 0 3 in
#if Goals.solve (unify_goal v 2) then Fd.fprint stdout v;;
2- : unit = ()
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Note that this goal is the built-in goal Goals.unify.
This goal creation can be used to pack any side effect function:

#let gprint_int x = Goals.atomic (fun () -> print_int x);;
val gprint_int : int -> Facile.Goals.t = <fun>

#Goals.solve (Goals.forto 0 5 gprint_int);;
012345- : bool = true

The FaCiLe implementation of the classic “findall” of Prolog also illustrates the use of Goals.atomic
to perform side effects: in this case to store all the solutions found in a list. The function findall
in this example takes a “functional goal” g as argument which itself takes the very variable x from
which we want to find all the possible values for which g succeeds; it could correspond to the
Prolog term:

findall(X, g(X), Sol)

#let findall g x =
# let sol = ref [] in
# let store = Goals.atomic (fun () -> sol := Fd.elt_value x :: !sol) in
# let goal = g x &&~ store &&~ Goals.fail in
# ignore (Goals.solve goal);
# !sol;;
val findall :

(Facile.Easy.Fd.t -> Facile.Goals.t) ->

Facile.Easy.Fd.t -> Facile.Easy.Fd.elt list = <fun>

We first declare a reference sol on an empty list to store all the solutions. Then the simple
goal store is defined to push any new solution on the head of sol – note that we here use
Fd.elt_value v (see ??) for conciseness but it is quite unsafe unless we are sure that v is bound.
The main goal is the conjunction of g, store and a failure. This goal obviously always fails, so
we “ignore” the boolean returned by Goals.solve, and the solutions list is eventually returned.

The main point when creating goals is to precisely distinguish the time of creation of the goal
from the time of its execution. For example, the following goal does not produce what might be
expected:

#let wrong_min_or_max var =
# let min = Fd.min var and max = Fd.max var in
# (Goals.unify var min ||~ Goals.unify var max);;
val wrong_min_or_max : Facile.Easy.Fd.t -> Facile.Goals.t = <fun>

The min and max of the variable var are processed when the goal is created and may be different
from the min and max of the variable when the goal will be called. To fix the problem, min and max
must be computed within the goal. Then the latter must return the disjunction, which cannot be
done with a simple call to Goals.atomic; function Goals.create (described in the next section)
must be used instead.

3.4.2 Arbitrary Goal: Goals.create

The function Goals.atomic does not allow to construct goals which themselves construct new
goals (similar to Prolog clauses). The Goals.create function “goalifies” a function which must
return another goal, possibly Goals.success to terminate.

Let’s write the goal which tries to instantiate a variable to its minimum value or to its maxi-
mum:

#let min_or_max v =
# Goals.create
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# (fun () ->
# let min = Fd.min v and max = Fd.max v in
# Goals.unify v min ||~ Goals.unify v max)
# ();;
val min_or_max : Facile.Easy.Fd.t -> Facile.Goals.t = <fun>

The other difference between Goals.create and Goals.atomic is the argument of the goalified
function which may be of any type (’a) and which must be passed as the second argument to
Goals.create. In the previous example, we use ().

Goals.create allows the user to define recursive goals by a mapping on a recursive function.
In the next example, we iterate a goal non-deterministically on a list. Note that this goal is
equivalent to the built-in goal Goals.List.exists.

#let rec iter_disj fgoal list =
# Goals.create
# (function
# [] -> Goals.success
# | x::xs -> fgoal x ||~ iter_disj fgoal xs)
# list;;
val iter_disj : (’a -> Facile.Goals.t) -> ’a list -> Facile.Goals.t = <fun>

#let gprint_int x = Goals.atomic (fun () -> print_int x);;
val gprint_int : int -> Facile.Goals.t = <fun>

#let gprint_list = iter_disj gprint_int;;
val gprint_list : int list -> Facile.Goals.t = <fun>

#if Goals.solve (gprint_list [1;7;2;9] &&~ Goals.fail ||~ Goals.success) then
# print_newline ();;
1729

- : unit = ()

3.4.3 Recursive Goals: Goals.create rec

FaCiLe provides also a constructor for intrinsically recursive goals. Expression Goals.create_rec f
is similar to Goals.create f except that the argument of the function f is the created goal itself.

The simplest example using this feature is the classic repeat predicate of Prolog implementing
a non-deterministic loop:

#let repeat = Goals.create_rec (fun self -> Goals.success ||~ self);;
val repeat : Facile.Goals.t = <abstr>

The goalified function simply returned the disjunction of a success and itself.
The Goals.indomain function which non-deterministically instantiates a variable is written

using Goals.create_rec:

#let indomain var =
# Goals.create_rec ~name:"indomain"
# (fun self ->
# match Fd.value var with
# Val _ -> Goals.success
# | Unk attr ->
# let dom = Var.Attr.dom attr in
# let remove_min =
# Goals.atomic (fun () -> Fd.refine var (Domain.remove_min dom))
# and min = Domain.min dom in
# Goals.unify var min ||~ (remove_min &&~ self));;
val indomain : Facile.Easy.Fd.t -> Facile.Goals.t = <fun>
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The goal first checks if the variable is already bound and does nothing in this case. If it is an
unknown, it returns a goal trying to instantiate the variable to its minimum or to remove it before
continuing with the remaining domain.

3.5 Backtrackable Invariant References – BIRs

FaCiLe provides through the module Invariant some features to handle data-structures which are
functionnally dependant between each other. These invariants are directly derived from the work
of [8], although they are meant to be used within CP search goals. So they’ll be called backtrackable
invariant references or BIRS in the sequel, as their values are restored upon backtracks.

An invariant is either:

• a constant,

• or a mutable value,

• or the result of a function applied to other invariants,

• or an attribute of any dynamic data-structure, e.g. the maximal value of a finite domain
variable.

FaCiLe can provide efficient handling of the dependencies between BIRs in order to keep them
updated. For example, if an integer (or floating point) BIR i is defined as the sum of n others
i1, . . . , in, the change of the value of one of i1, . . . in will be taken into account in constant time to
update i.

The main original use of invariants proposed in [8] is within local search algorithms. In our con-
text, it can be used also to compute a heuristic criterion used during search. The implementation
of BIRs in FaCiLe is fully compatible with backtrack.

In the following, we call BIR a mutable value and invariant the relation (a functional equation)
between BIRs.

3.5.1 Type, creation, access and modification

BIRs of FaCiLe are polymorphic so you can handle any data-structures with them. A BIR may
be mutable or not and this property is handled by the typing:

• a mutable integer BIR has type (int, setable) Inv.t,

• whereas a non mutable float BIR has type (float, notsetable) Inv.t.

However, shortcuts with only one type parameter are defined in module Invariant to simplify
the writting of BIRS: ’a setable_t and ’a unsetable_t.

We show in the following example how to create, access and modify a BIR:

#let x = Invariant.create 1729 and y = Invariant.constant 3.14;;
val x : int Facile.Invariant.setable_t = <abstr>

val y : float Facile.Invariant.unsetable_t = <abstr>

#(Invariant.get x, Invariant.get y);;
- : int * float = (1729, 3.14)

#Invariant.set x 1730;;
- : unit = ()

#Invariant.get x;;
- : int = 1730

Like finite domain variables, BIRs can be named thanks to an optional string argument (?name)
and feature a unique integer identity (accessible with function Invariant.id).
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3.5.2 Operations

FaCiLe provides basic arithmetic operators on integer BIRs. These functions are completed by
primitives working on array of BIRs (submodule Invariant.Array).

The following table gives the time and space complexity of the basic invariants :

Invariant Time Memory
s =

∑n
i=1 xi O(1) O(1)

p =
∏n

i=1 xi O(1) O(1)
m = mini∈[1,n] xi O(log n) O(n)
i = argmini∈[1,n]xi O(log n) O(n)

#let a = Array.map Invariant.create [|1;2;3;4|];;
val a : int Facile.Invariant.setable_t array =

[|<abstr>; <abstr>; <abstr>; <abstr>|]

#let s = Invariant.sum a;;
val s : int Facile.Invariant.unsetable_t = <abstr>

#Invariant.get s;;
- : int = 10

#Invariant.set a.(3) 8;;
- : unit = ()

#Invariant.get s;;
- : int = 14

The library also provides generic wrappers (unary, binary and ternary, for functions with
arity up to tree) for BIRs which allow the user to transform any function working on the type α
into a function working on an α BIR:

#let x = Invariant.create ~name:"x" 2.71;;
val x : float Facile.Invariant.setable_t = <abstr>

#let y = Invariant.unary ~name:"log" log x;;
val y : float Facile.Invariant.unsetable_t = <abstr>

#Invariant.fprint stdout y; Invariant.get y;;
log(x)- : float = 0.996948634891609564

#Invariant.set x 8.0; Invariant.get y;;
- : float = 2.07944154167983575

These wrapped functions can be named with an optional string argument.

3.5.3 Domain access

In order to implement computation of heuristic criterion, it is required to be able to translate
attributes of finite domain variables (of type Fd.t or SetFd.t) into invariant references. These
functionalities are listed in submodules Invariant.Fd and Invariant.SetFd.

For example, the heuristic criterion which selects the variable with the smallest domain is easily
computed as follows :

#let best = fun vars ->
# Invariant.Array.argmin (Array.map Invariant.Fd.size vars);;
val best :

Facile.Invariant.Fd.fd array ->

(int -> ’a) -> int Facile.Invariant.unsetable_t = <fun>
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3.6 Module Easy

Easy is a module that the user is strongly advised to open in order to facilitate access to FaCiLe
(unless names clash with other open modules). It simply defines aliases to values and types of
other modules:

• All the infix operators from Arith, Goals and Reify

• Frequently used mapping functions of Arith: i2e and fd2e

• Type of finite domain variables from Var: concrete fd = Unk of Fd.attr | Val of Fd.elt

• Module Fd from Var

Note that the user of FaCiLe can extend this mechanism with its own “Easier” module aliasing
any value or type of the library.
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unary, 38
unify
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[9] Jean-Charles Régin. Generalized arc consistency for global cardinality constraint. In Proceed-
ings of the Thirteenth National Conference on Artificial Intelligence, 1996. 18

47


	I User's Manual
	Getting Started
	Basics
	A Classic Example

	Building Blocks
	Domains
	Variables
	Arithmetic Expressions
	Constraints
	Creation and Use
	Arithmetic Constraints
	Global Constraints
	Reification

	Search
	Optimization
	Constraint Programs on Finite Sets
	Set Domains
	Set Variables
	Constraints
	Labeling


	Advanced Usage
	Search Control
	Basic Mechanisms
	Combining Goals with Iterators

	Constraints Control
	Events
	Suspending to Events, Waking Identity
	Wakening, Queuing, Priorities
	Constraint Store

	User's Constraints
	User's Goals
	Atomic Goal: Goals.atomic
	Arbitrary Goal: Goals.create
	Recursive Goals: Goals.create_rec

	Backtrackable Invariant References -- BIRs
	Type, creation, access and modification
	Operations
	Domain access



	II Reference Manual
	Modules
	Module Easy


	Index

