
Bolt – version 1.1

http://bolt.x9c.fr

Copyright c© 2009-2011 Xavier Clerc – bolt@x9c.fr
Released under the LGPL v3

February 6, 2011

Introduction

Bolt is a logging tool for the Objective Caml language1. Its name stems from the following acronym:
Bolt is an Ocaml Logging Tool. It is inspired by and modeled after the Apache log4j utlity2.
Bolt provides both a comprehensive library for log production, and a camlp4-based syntax exten-
sion that allows to remove log directives. The latter is useful to be able to distribute an executable
that incurs no runtime penalty if logging is used only during development.

The importance of logging is frequently overlooked, but (quite ironically) in the same time, the
most used debugging method is by far the print statement. Bolt aims at providing Objective
Caml developpers with a framework that is comprehensive, yet easy to use. It also tries to leverage
the benefits of both compile-time and run-time configuration to produce a flexible library with a
manageable computational cost.

Bolt, in its 1.1 version, is designed to work with version 3.12.0 of Objective Caml.
Bolt is released under the LGPL version 3.
Bugs should be reported at http://bugs.x9c.fr.

Building Bolt

Bolt can be built from sources using make (in its GNU Make 3.81 flavor), and Objective Caml
version 3.12.0. No other dependency is needed. Following the classical Unix convention, the build
and installation process consists in these three steps:

1. sh configure

2. make all

3. make install

During the first step, one can specify elements if they are not correctly inferred by the ./configure
script; the following switches are available:

1The official Caml website can be reached at http://caml.inria.fr and contains the full development suite
(compilers, tools, virtual machine, etc.) as well as links to third-party contributions.

2http://logging.apache.org/log4j

1

http://bolt.x9c.fr
mailto:bolt@x9c.fr
http://bugs.x9c.fr
http://caml.inria.fr
http://logging.apache.org/log4j

• -ocaml-prefix to specify the prefix path to the Objective Caml installation (usually /usr/local);

• -ocamlfind to specify the path to the ocamlfind executable (notice that the presence of
ocamlfind3 is optional, and that the tool is used only at installation if present);

• -no-native-dynlink to disable dynamic linking.

During the third and last step, according to local settings, it may be necessary to acquire privileged
accesses, running for example sudo make install.
The Java4 version will be built only if the ocamljava5 compiler is present and located by the
makefile. The syntax extension will be compiled only to bytecode.

Using Bolt

Base concepts

The central concept of Bolt is loggers. Loggers have names that are strings composed of dot-
separated components; they are thus akin to module names, and it is actually good practice to
use the logger M to log events of the module M. It is possible to register several loggers with the
same name; this feature is useful to record the events related to a given module to several different
destinations (using possibly different filters, layout, and outputs).

Logger are also organized into a hierarchy (meaning that logger P is a parent of logger P.S). When
a log statement is executed, it is associated with a logger name. Figure 1 shows the hierarchy
of loggers for an application using the loggers whose name appears in black. The loggers whose
names appear in gray are implicitly added by Bolt in order to have a complete tree of loggers:
those actually used in the program are the leaves, and the root is the special "" logger. The arrows
define the is-a-child-of relation.

Every log event will be presented to all logger with that name, and to all loggers with a parent name.
Each logger will decide according to its level and filter if the event should actually be recorded.
Finally, all events are presented to all loggers having the special empty name (corresponding to
the string ""). The hierarchy of the loggers is a key feature that allows to easily enable or disable
logging for large parts of an application. Figure refdispatch shows how a message initially created
for the Library.PartB.Module loggers is dispatched to all loggers with parent names, including
loggers that are not explicitly used in the application (those whose name appears in gray). The
dashed arrows show the order in which the event is presented to the different loggers.

Bolt is also based on the following concepts:

• Event: the event is the entity built each time the application executes a log statement.

• Level: the level characterizes how critical an event is.
An event will be recorded iff its level is below the level of logger.
The levels are, in asending order: FATAL, ERROR, WARN, INFO, DEBUG, and TRACE.

3Findlib, a library manager for Objective Caml, is available at http://projects.camlcity.org/projects/

findlib.html
4The official website for the Java Technology can be reached at http://java.sun.com.
5Ojective Caml compiler generating Java bytecode, by the same author – http://ocamljava.x9c.fr

2

http://projects.camlcity.org/projects/findlib.html
http://projects.camlcity.org/projects/findlib.html
http://java.sun.com
http://ocamljava.x9c.fr

"Library"

"Library.PartA.Module1"

"MainModule"

""

"ArgsModule"

"Library.PartA.Module2" "Library.PartB.Module"

"Library.PartA" "Library.PartB"

Figure 1: Example of logger hierarchy.

• Filter: each logger has an associated filter, ensuring that only the events satistying the filter
will be recorded.

• Layout: each logger has an associated layout that defines how an event is rendered into a
string.

• Output: each logger has an associated output that defines where event are actually recorded
(two loggers should not have the same destination).

Linking with the library

Linking with Bolt is usually done by adding one of the following library to the linking command-line:

• -I +bolt bolt.cma (for ocamlc compiler);

• -I +bolt bolt.cmxa (for ocamlopt compiler);

• -I +bolt bolt.cmja (for ocamljava compiler).

In order, to use Bolt in multithread applications, it is necessary to also link with the BoltThread
module. This also implies to pass the -linkall option to the compiler.

Adding log statements

There are two ways to add a log statement: either by calling explicitly the Bolt.Logger.log
function, or by using the bolt pp.cmo camlp4 syntax extension. One is advised to use the latter
method: first, using the syntax extension is lightweight (elements such as line and column are
automatically computed); second, it allows to remove the log statements at compilation (it may be
useful to have a development version packed with a lot of debug log statements and a distributed
version that suffers no runtime penalty related to logging). Moreover, only a given part of log
statements may be removed, on a level basis.

3

"Library"

"Library.PartA.Module1"

"MainModule"

""

"ArgsModule"

"Library.PartA.Module2" "Library.PartB.Module"

"Library.PartA" "Library.PartB"

event

Figure 2: Dispatch of an event generated for the “Library.PartB.Module” logger.

Explicit logging

To log using the Bolt.Logger.log function, one has to call it with the following parameters
(cf. code sample 1):

• a string parameter giving the name of the logger to use;

• a Bolt.Level.t parameter giving the level of the event to log;

• an optional string parameter (named file) giving the file associated with the log event;

• an optional int parameter (named line) giving the line number associated with the log event;

• an optional int parameter (named column) giving the column number associated with the
log event;

• an optional (string * string) list parameter (named properties) giving the property list
associated with the log event;

• an optional exn option parameter (named error) giving the exception associated with the
log event;

• a string parameter giving the message of the log event.

Code sample 1 Explicit logging.

let () =
...
Bolt.Logger.log "mylogger" Bolt.Level.DEBUG "some debug info";
...

4

Implicit logging

To log using the syntax extension, one has to use the Bolt-introduced log expression. This is done
by passing the -pp ’camlp4o /path/to/bolt pp.cmo’ option to the Objective Caml compiler.
The new LOG expression can be used in an Objective Caml program wherever an expression of type
unit is waited. The bnf definition of this expression is as follows:

log expr ::= LOG string arguments attributes LEVEL level

arguments ::= list of expressions | ε
attributes ::= attributes attribute | ε
attribute ::= NAME string | PROPERTIES expr | EXCEPTION expr

level ::= FATAL | ERROR | WARN | INFO | DEBUG | TRACE
The string following the LOG keyword is the message of the log event. This string can be followed
by expressions; in this case the string is interpreted as a printf format string, using the following
expressions as values for the % placeholders of the format string.

The attributes are optional, and have the following meaning:

• NAME defines the name of the logger to be used;

• PROPERTIES defines the properties associated with the log event (the expression should have
the type (string * string) list);

• EXCEPTION defines the exception associated with the log event (the expression should have
type exn).

Code sample 2 shows how the expression can be used. Compared to explicit logging through the
Bolt.Logger.log, when using the LOG expression file, line number, and column number are deter-
mined automatically.

When no NAME attribute is provided, the logger name is computed from the source file name: the
.ml suffix is removed and the result is capitalized. More, the bolt pp.cmo syntax extension accepts
the following parameters:

• -logger <n> sets the logger name to n for all LOG expressions of the compiled file;

• -for-pack <P> sets the prefix to the logger names used throughout the compiled file to “P.”.

Finally, the bolt pp.cmo syntax extension recognizes a third parameter -level <l> where l should
be either NONE or a level. If l is NONE, all LOG expressions will be removed from the source file;
otherwise, only the LOG expression with a level inferior or equal to the passed value will be kept.

Code sample 2 Implicit logging.

let () =
...
LOG "some debug info" LEVEL DEBUG;
...

When compiling in unsafe mode, the -unsafe switch should be passed to camlp4 instead of the
compiler. Indeed, as camlp4 is building a syntax tree that is passed to the compiler, issuing the

5

-unsafe switch to the compiler has no effect because it is too late: the code has been built by
camlp4 in safe mode. In such a case, the compiler warns the user with the following message:
Warning: option -unsafe used with a preprocessor returning a syntax tree. The cor-
rect command-line switch is hence -pp ’camlp4o -unsafe /path/to/bolt pp.cmo’.

Configuring log

There are two ways to configure log, that is to register loggers that will handle the log events
produced by the application. The first way is to explicitly call Bolt.Logger.register while the
second one is to use a configuration file that will be interpreted by Bolt at runtime.

To register (i.e. to create) a logger using the Bolt.Logger.register function, one has to call it
with the following parameters:

• a string parameter giving the name of the logger;

• a Bolt.Level.t parameter giving the maximum level for events to be logged;

• a string parameter giving the filter of the logger;

• a string parameter giving the layout of the logger;

• a string parameter giving the output of the logger;

• a string * float option couple that gives the parameters used for output creation: the
first component is the name of the output while the second one is the optional rotate value
(the actual semantics of both component is dependent on the actual output used).

To register a logger using a configuration file, one should set the BOLT FILE environment variable
to the path of the configuration file. If the configuration file cannnot be loaded, an error message is
written on the standard error unless the BOLT SILENT environment variable is set to either “YES”
or “ON” (defaulting to “OFF”, case being ignored).

The format of the configuration file is as follows:

• the format is line-oriented;

• comments start with the ’#’ character and end at the end of the line;

• sections start with a line of the form [a.b.c], ”a.b.c” being the name of the section;

• a section ends when a new section starts;

• at the beginning of the file, the section named ”” is currently opened;

• section properties are defined by lines of the form ”key=value”;

• others lines should be empty (only populated with whitespaces and comments).

Each section defines a logger whose name is the section name. The following properties are used
to customize the logger:

• level defines the level of the logger;

6

• filter defines the filter of the logger;

• layout defines the layout of the logger;

• output defines the output of the logger;

• name is the first parameter passed to create the actual output;

• rotate is the second parameter passed to create the actual output.

The level can have one of the following values: TRACE, DEBUG, INFO, WARN, ERROR, FATAL. The
possible values for the other properties are discussed in the following sections.
Code sample 3 examplifies a typical configuration file. It defines three loggers (with names “”,
“Pack.Main”, and “Pack.Aux”). When executed, the application will produce three files “bymodule.result”,
“bymodule1.result”, and “bymodule2.result”: the first file will contain the log information for
the whole application while the other ones will contain respectively the log information associated
with the “Pack.Main” and “Pack.Aux” loggers.

Code sample 3 Example of configuration file.

level=trace
filter=all
layout=simple
output=file
name=bymodule.result

[Pack.Main]
level=trace
filter=all
layout=simple
output=file
name=bymodule1.result

[Pack.Aux]
level=trace
filter=all
layout=simple
output=file
name=bymodule2.result

Predefined filters

The following filters are predefined:

• all keeps all events;

• none keeps no event;

• trace or below keeps events with level inferior or equal to TRACE;

7

• debug or below keeps events with level inferior or equal to DEBUG;

• info or below keeps events with level inferior or equal to INFO;

• warn or below keeps events with level inferior or equal to WARN;

• error or below keeps events with level inferior or equal to ERROR;

• fatal or below keeps events with level inferior or equal to FATAL;

• file defined keeps events with an actual filename;

• file undefined keeps events with no filename;

• line defined keeps events with a strictly positive line number;

• line undefined keeps events with a negative or null line number;

• column defined keeps events with a strictly positive column number;

• column undefined keeps events with a negative or null column number;

• message defined keeps events with a non-empty message;

• message undefined keeps events with an empty message;

• properties empty keeps events with an empty property list;

• properties not empty keeps events with an non-empty property list;

• exception some keeps events with an exception;

• exception none keeps events with no exception.

Predefined layouts

Bolt predefines the following non-configurable layouts:

• simple with format: LEVEL - MESSAGE;

• default with format: TIME [FILE LINE] LEVEL MESSAGE;

• paje whose format is the Pajé trace format6;

• html whose format is html, storing events into a table;

• xml whose format is xml(compatible with log4j).

XXX Paje
Two other layouts are predefined:

6http://sourceforge.net/projects/paje/

8

http://sourceforge.net/projects/paje/

• pattern whose actual format is specified by defining a property named pattern
This property is a string that can contain $(x) elements where x is a key (defined below) or
$(x:n) where x is a key and n is a padding instruction (the absolute value of n is the total
width; the padding is left is n is negative, and right if n is positive)
it is also possible to specify through the pattern-header-file (respectively pattern-footer-file)
property the name of a file whose contents is used as the header (respectively footer) that is
written at start/end as well as at each rotation

• csv whose actual format is specified by properties named csv-separator and csv-elements
csv-separator is the string to be used as the separator between values
csv-elements is a whitespace-separated list of the keys of the values to render

The following keys are available for use by the pattern and csv layouts:

• id event identifier;

• hostname host name of running program;

• process process identifier of running program (i.e. pid);

• thread thread identifier;

• sec seconds of event timestamp;

• min minutes of event timestamp;

• hour hour of event timestamp;

• mday day of month of event timestamp;

• month month of year of event timestamp;

• year year of event timestamp;

• wday day of week of event timestamp;

• time event timestamp;

• relative time elapsed between initilization and event creation;

• level event level;

• logger event logger;

• origin first logger that received the event;

• file event file;

• filebase event file (without directory information);

• line event line;

• column event column;

• message event message;

9

• properties property list of event (formatted as [”[k1: v1; ...; kn: vn]”]);

• exception event exception;

• backtrace event exception backtrace.

Predefined outputs

There are three predefined outputs, namely void, growlnotify7, and file. The void output
discards all data. The file output writes data to a bare file, the name property (or the string
value when using Bolt.Logger.register) defines the path of the file to be used, and the rotate
property (or the float option value when using Bolt.Logger.register) gives the rates in sec-
onds at which files will be rotated.

When using rotation or several program instances in parallel, it is necessary for the name to contain
a piece of information ensuring that the file name will be unique; otherwise, the same file will be
written over and over again. In version 1.0, Bolt supported the % special character that was
substituted by a timestamp. Since version 1.1, Bolt additionally supports a more general $(key)
substitution mechanism with the following keys:

• time as a bare alternative to %;

• pid that designates the process identifier;

• hostname that designates the process hostname (useful when using a shared file system);

• var that designates any environment variable available from the process.

Reviewing log

Once the log information has been produced by the application, the developper and/or the user will
have to review it. Although this can easily be done using classical Unix commands (such as grep,
cut, sed; etc), a dedicated tool such as a GUI can be helpful. For this reason, the XML layout of
Bolt produces log4j-compatible XML files allowing the use of the Apache Chainsaw application8.
Code sample 4 shows a XML file that could be used to wrap the XML data produced by Bolt (in
bolt.xml file) in such a way that Chainsaw can load it. This code sample is a reproduction of the
one provided in the Javadoc of the log4j org.apache.log4j.xml.XMLLayout class9.

Code sample 4 Wrapping produced XML data into a Chainsaw-compatible XML.

<?xml version="1.0"?>

<!DOCTYPE log4j:eventSet SYSTEM "log4j.dtd" [<!ENTITY data SYSTEM "bolt.xml">]>

<log4j:eventSet version="1.2" xmlns:log4j="http://jakarta.apache.org/log4j/">
&data;

</log4j:eventSet>

7Command-line utility associated with the Growl program available at http://growl.info/
8http://logging.apache.org/chainsaw/
9http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/xml/XMLLayout.html

10

http://growl.info/
http://logging.apache.org/chainsaw/
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/xml/XMLLayout.html

Complete example

Code sample 5 shows a short program using the implicit logging feature of Bolt. The program can
be compiled and executed by the Makefile shown by code sample 6. The compile target underlines
that compilation should be done through the Bolr preprocessor, and that link entails references to
the str, unix, and dynlink libraries (all of them being shipped with the standard Objective Caml
distribution).

Code sample 5 Source example.

let funct n =
LOG "funct(%d)" n LEVEL DEBUG;
for i = 1 to n do

print_endline "..."
done

let () =
LOG "application start" LEVEL TRACE;
funct 3;
funct 7;
LOG "application end" LEVEL TRACE

Code sample 6 Makefile example.

DEPENDENCIES=str.cma unix.cma dynlink.cma

default: clean compile run view

clean:
rm -f *.cm* log bytecode

compile:
ocamlc -c -I +bolt bolt.cma \

-pp ’camlp4o path/to/bolt/bolt_pp.cmo’ source.ml
ocamlc -o bytecode -I +bolt $(DEPENDENCIES) bolt.cma source.cmo

run:
BOLT_FILE=config ./bytecode

view:
cat log

The target run of the Makefile shows that the environment variable BOLT FILE should be set to
the path of the configuration file defining the actual runtime-configuration of logging. The related
configuration file is represented by code sample 7. As a result of execution, a plain text file named
log will be produced, and can be viewed using the view target of the Makefile.

11

Code sample 7 Configuration example.

level=trace
filter=all
layout=default
output=file
name=log

Customizing Bolt

It is possible to customize Bolt by defining new filters, layouts, and outputs. This is easily done by
using respectively the Bolt.Filter.register, Bolt.Layout.register, and Bolt.Output.register
functions. More information about the actual types of these functions can be found in the ocamldoc-
generated documentation (available in the ocamldoc directory, generation being triggered by the
make html-doc command).

When custom elements have been registered using the previously mentioned functions, they can
be used from the configuration files or from the Bolt.Logger.register function. However, it
is necessary for the custom elements to be registered before any log event concerned with theses
custom elements is built. Otherwise, elements won’t be found and Bolt will resort to default values.

A good practice is to define the new filters, layouts, and outputs in modules that are not part of
the application. One should not forget to pass the -linkall switch to the compilers when linking
such modules. Another option is to avoid linking these modules with the application, and to use
the BOLT PLUGINS environment variable to load them. The BOLT PLUGINS environment variable
contains a comma-separated list of files that will be loaded through Dynlink.

Code sample 8 shows how to register a new filter that keeps only event with an even line number,
and a new layout programmed using the Printf.sprintf machinery.

12

Code sample 8 Customizing Bolt with new filter and layout.

let () =
Bolt.Filter.register

"myfilter"
(fun e -> (e.Bolt.Event.line mod 2) = 0)

let () =
Bolt.Layout.register

"mylayout"
([],
[],
(fun e ->
Printf.sprintf "file \"%s\" says \"%s\" with level \"%s\" (line: %d)"

e.Bolt.Event.file
e.Bolt.Event.message
(Bolt.Level.to_string e.Bolt.Event.level)
e.Bolt.Event.line))

13

