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1. Foreword

Menhir is a parser generator. It turns high-level grammar specifications, decorated with semantic actions
expressed in the Objective Caml programming language [10], into parsers, again expressed in Objective Caml.
It is based on Knuth’s LR(1) parser construction technique [9]. It is strongly inspired by its precursors:yacc [8],
ML-Yacc [13], andocamlyacc [10], but offers a large number of minor and major improvements that make it a
more modern tool.

This brief reference manual explains how to use Menhir. It does not attempt to explain context-free grammars,
parsing, or the LR technique. Readers who have never used a parser generator are encouraged to read about these
ideas first [1, 2, 6]. They are also invited to have a look at thedemos directory in Menhir’s distribution.

At this stage, potential users should be warned about two facts. First, Menhir’s feature set is not stable. There
is a tension between preserving a measure of compatibility withocamlyacc, on the one hand, and introducing
new ideas, on the other hand. Some aspects of the tool, such as the error handling and recovery mechanism,
are still potentially subject to incompatible changes. Second, the present release isalpha-quality. There is much
room for improvement in the tool and in this reference manual. Bug reports and suggestions are welcome!

2. Usage

Menhir is invoked as follows:

menhir option. . .option filename. . .filename

Each of the file names must end with.mly and denotes a partial grammar specification. These partial grammar
specifications are joined (§5.1) to form a single, self-contained grammar specification, which is then processed.
A number of optional command line switches allow controlling many aspects of the process.

--base basename. This switch controls the base name of the.ml and .mli files that are produced.
That is, the tool will produce files namedbasename.ml andbasename.mli. Note thatbasenamecan contain
occurrences of the/ character, so it really specifies a path and a base name. When only onefilenameis provided
on the command line, the defaultbasenameis obtained by deprivingfilenameof its final .mly suffix. When
multiple file names are provided on the command line, no default base name exists, so that the--base switch
mustbe used.

--comment. This switch causes a few comments to be inserted into the Objective Caml code that is written
to the.ml file.

--depend. This switch causes Menhir to generate dependency information for use in conjunction with
make. When invoked in this mode, Menhir does not generate a parser. Instead, it examines the grammar specifi-
cation and prints a list of prerequisites for the targetsbasename.cm[oix], basename.ml, andbasename.mli.
This list is intended to be textually included within aMakefile. It is important to note thatbasename.ml and
basename.mli can have.cm[iox] prerequisites. This is because, when the--infer switch is used, Menhir
infers types by invokingocamlc, andocamlc itself requires the Objective Caml modules that the grammar
specification depends upon to have been compiled first. The filedemos/Makefile.shared helps exploits the
--depend switch.

When in--depend mode, Menhir computes dependencies by invokingocamldep. The command that is
used to runocamldep is controlled by the--ocamldep switch.

--dump. This switch causes a description of the automaton to be written to the filebasename.automaton.

--error-recovery. This switch causes error recovery code to be generated. Error recovery, also known
as re-synchronization, consists in dropping tokens off the input stream, after an error has been detected, until
a token that can be shifted in the current state is found. This behavior is made optional because it is seldom
exploited and requires extra code in the parser. See also§8.

--explain. This switch causes conflict explanations to be written to the filebasename.conflicts. See
also§6.



--external-tokens T. This switch causes the definition of thetoken type to be omitted inbasename.ml
andbasename.mli. Instead, the generated parser relies on the typeT.token, whereT is an Objective Caml
module name. It is up to the user to define moduleT and to make sure that it exports a suitabletoken type.
ModuleT can be hand-written. It can also be automatically generated out of a grammar specification using the
--only-tokens switch.

--infer. This switch causes the semantic actions to be checked for type consistencybeforethe parser is
generated. This is done by invoking the Objective Caml compiler. Use of--infer is strongly recommended,
because it helps obtain consistent, well-located type error messages, especially when advanced features such as
Menhir’s standard library or%inline keyword are exploited. One downside of--infer is that the Objective
Caml compiler usually needs to consult a few.cm[iox] files. This means that these files must have been created
first, requiringMakefile changes and use of the--depend switch.

--log-automaton level. Whenlevel is nonzero, this switch causes some information about the automaton
to be logged to the standard error channel.

--log-code level. Whenlevel is nonzero, this switch causes some information about the generated Objec-
tive Caml code to be logged to the standard error channel.

--log-grammar level. Whenlevel is nonzero, this switch causes some information about the grammar to
be logged to the standard error channel. Whenlevel is 2, thenullableandFIRSTtables are displayed.

--no-inline. This switch causes all%inline keywords in the grammar specification to be ignored. This
is especially useful in order to understand whether these keywords help solve any conflicts.

--no-stdlib. This switch causes the standard librarynot to be implicitly joined with the grammar
specifications whose names are explicitly provided on the command line.

--ocamlc command. This switch controls howocamlc is invoked (when--infer is used). It allows setting
both the name of the executable and the command line options that are passed to it.

--ocamldep command. This switch controls howocamldep is invoked (when--depend is used). It allows
setting both the name of the executable and the command line options that are passed to it.

--only-preprocess. This switch causes the grammar specifications to be transformed up to the point
where the automaton’s construction can begin. The grammar specifications whose names are provided on
the command line are joined (§5.1); all parameterized nonterminal symbols are expanded away (§5.2); type
inference is performed, if--infer is enabled; all nonterminal symbols marked%inline are expanded away
(§5.3). This yields a single, monolithic grammar specification, which is printed on the standard output channel.

--only-tokens. This switch causes the%token declarations in the grammar specification to be translated
into a definition of thetoken type, which is written to the filesbasename.ml andbasename.mli. No code is
generated. This is useful when a single set of tokens is to be shared between several parsers. The directory
demos/calc-two contains a demo that illustrates the use of this switch.

--timings. This switch causes internal timing information to be sent to the standard error channel.

--trace. This switch causes tracing code to be inserted into the generated parser, so that, when the parser
is run, its actions are logged to the standard error channel. This is analogous toocamlrun’s p=1 parameter,
except this switch must be enabled at compile time: one cannot selectively enable or disable tracing at runtime.

--stdlib directory. This switch controls the directory where the standard library is found. It allows
overriding the default directory that is set at installation time. The trailing/ character is optional.

--version. This switch causes Menhir to print its own version number and exit.



specification::= declaration . . . declaration%% rule . . . rule [%% Objective Caml code]
declaration::= %{ Objective Caml code%}

%parameter < uid : Objective Caml module type>
%token [ < Objective Caml type> ] uid . . . uid
%nonassoc uid . . . uid
%left uid . . . uid
%right uid . . . uid
%type < Objective Caml type> lid . . . lid
%start [< Objective Caml type> ] lid . . . lid

rule ::= [%public ] [%inline ] lid [ ( id, . . . , id ) ] : [ | ] group| . . . | group
group ::= production| . . . | production{ Objective Caml code} [%prec id ]

production::= producer . . . producer[%prec id ]
producer::= [ lid = ] actual

actual ::= id [ ( actual, . . . , actual) ] [ ? |+ | * ]

Figure 1. Syntax of grammar specifications

3. Lexical conventions

The semicolon character (;) is treated as insignificant, just like white space. Thus, rules and producers (for
instance) can be separated with semicolons if it is thought that this improves readability. They can be omitted
otherwise.

Identifiers (id) coincide with Objective Caml identifiers, except they are not allowed to contain the quote (’)
character. Following Objective Caml, identifiers that begin with a lowercase letter (lid) or with an uppercase
letter (uid) are distinguished.

Comments are C-style (surrounded with/* and*/, cannot be nested), C++-style (announced by// and
extending until the end of the line), or Objective Caml-style (surrounded with(* and*), can be nested). Of
course, inside Objective Caml code, only Objective Caml-style comments are allowed.

Objective Caml type expressions are surrounded with< and>. Within such expressions, all references to
type constructors (other than the built-inlist, option, etc.) must be fully qualified.

4. Syntax of grammar specifications

The syntax of grammar specifications appears in Figure1. (For compatibility withocamlyacc, some specifica-
tions that do not fully adhere to this syntax are also accepted.)

4.1 Declarations

A specification file begins with a sequence of declarations, ended by a mandatory%% keyword.

4.1.1 Headers

A header is a piece of Objective Caml code, surrounded with%{ and%}. It is copied verbatim at the beginning
of the .ml file. It typically contains Objective Camlopen directives and function definitions for use by the
semantic actions. If a single grammar specification file contains multiple headers, their order is preserved.
However, when two headers originate in distinct grammar specification files, the order in which they are copied
to the.ml file is unspecified.

4.1.2 Parameters

A declaration of the form:

%parameter < uid : Objective Caml module type>



causes the entire parser to become parameterized over the Objective Caml moduleuid, that is, to become
an Objective Caml functor. If a single specification file contains multiple%parameter declarations, their
order is preserved, so that the module nameuid introduced by one declaration is effectively in scope in the
declarations that follow. When two%parameter declarations originate in distinct grammar specification files,
the order in which they are processed is unspecified. Last,%parameter declarations take effect before%{ . . .
%}, %token, %type, or %start declarations are considered, so that the module nameuid introduced by a
%parameter declaration is effectively in scope inall %{ . . . %}, %token, %type, or %start declarations,
regardless of whether they precede or follow the%parameter declaration. This means, in particular, that the
side effects of an Objective Caml header are observed only when the functor is applied, not when it is defined.

4.1.3 Tokens

A declaration of the form:

%token [< Objective Caml type> ] uid1, . . . , uidn

defines the identifiersuid1, . . . , uidn as tokens, that is, as terminal symbols in the grammar specification and as
data constructors in thetokentype. If an Objective Caml typet is present, then these tokens are considered to
carry a semantic value of typet, otherwise they are considered to carry no semantic value.

4.1.4 Priority and associativity

A declaration of one of the following forms:

%nonassoc uid1 . . . uidn

%left uid1 . . . uidn

%right uid1 . . . uidn

attributes both apriority level and anassociativity statusto the symbolsuid1, . . . , uidn. The priority level
assigned touid1, . . . , uidn is not defined explicitly: instead, it is defined to be higher than the priority level
assigned by the previous%nonassoc, %left, or %right declaration, and lower than that assigned by the next
%nonassoc, %left, or%right declaration. The symbolsuid1, . . . , uidn can be tokens (defined elsewhere by a
%token declaration) or dummies (not defined anywhere). Both can be referred to as part of%prec annotations.
Associativity status and priority levels allow shift/reduce conflicts to be silently resolved (§6).

4.1.5 Types

A declaration of the form:

%type < Objective Caml type> lid1 . . . lidn

assigns an Objective Caml type to each of the nonterminal symbolslid1, . . . , lidn. For start symbols, providing
an Objective Caml type is mandatory, but is usually done as part of the%start declaration. For other symbols,
it is optional. Providing type information can improve the quality of Objective Caml’s type error messages.

4.1.6 Start symbols

A declaration of the form:

%start [ < Objective Caml type> ] lid1 . . . lidn

declares the nonterminal symbolslid1, . . . , lidn to be start symbols. Each such symbol must be assigned an
Objective Caml type either as part of the%start declaration or via separate%type declarations. Each of
lid1, . . . , lidn becomes the name of a function whose signature is published in the.mli file and that can be used
to invoke the parser.

4.2 Rules

Following the mandatory%% keyword, a sequence of rules is expected. Each rule defines a nonterminal
symbol id. In its simplest form, a rule begins withid, followed by a colon character (:), and continues with



a sequence of production groups (§4.2.1). Each production group is preceded with a vertical bar character (|);
the very first bar is optional. The meaning of the bar is choice: the nonterminal symbolid develops to either of
the production groups. We defer explanations of the keyword%public (§5.1), of the keyword%inline (§5.3),
and of the optional formal parameters( id, . . ., id ) (§5.2).

4.2.1 Production groups

In its simplest form, a production group consists of a single production (§4.2.2), followed by an Objective
Caml semantic action (§4.2.1) and an optional%prec annotation (§4.2.1). A production specifies a sequence of
terminal and nonterminal symbols that should be recognized, and optionally binds identifiers to their semantic
values.

Semantic actions A semantic action is a piece of Objective Caml code that is executed in order to assign a
semantic value to the nonterminal symbol with which this production group is associated. A semantic action
can refer to the (already computed) semantic values of the terminal on nonterminal symbols that appear in
the production via the semantic value identifiers bound by the production. For compatibility withocamlyacc,
semantic actions can also refer to these semantic values via positional keywords of the form$1, $2, etc. This
style is discouraged.

%prec annotations An annotation of the form%prec uid indicates that the precedence level of the produc-
tion group is the level assigned to the symboluid via a previous%nonassoc, %left, or %right declaration
(§4.1.4). In the absence of a%prec annotation, the precedence level assigned to each production is the level
assigned to the rightmost terminal symbol that appears in it. It is undefined if the rightmost terminal symbol has
an undefined precedence level or if the production mentions no terminal symbols at all. The precedence level
assigned to a production is used when resolving shift/reduce conflicts (§6).

Multiple productions in a group If multiple productions are present in a single group, then the semantic action
and precedence annotation are shared between them. This short-hand effectively allows several productions to
share a semantic action and precedence annotation without requiring textual duplication. It is legal only when
every production binds exactly the same set of semantic value identifiers and when no positional semantic value
keywords ($1, etc.) are used.

4.2.2 Productions

A production is a sequence of producers (§4.2.3), optionally followed by a%prec annotation (§4.2.1). It a
precedence annotation is present, it applies to this production alone, not to other productions in the production
group. It is illegal for a production and its production group to both carry%prec annotations.

4.2.3 Producers

A producer is an actual (§4.2.4), optionally preceded with a binding of a semantic value identifier, of the formlid
=. The actual specifies which construction should be recognized and how a semantic value should be computed
for that construction. The identifierlid, if present, becomes bound to that semantic value in the semantic action
that follows. Otherwise, the semantic value can be referred to via a positional keyword ($1, etc.).

4.2.4 Actuals

In its simplest form, an actual simply consists of a terminal or nonterminal symbol. The optional actual
parameters( actual, . . ., actual) and the optional modifier (?, +, or *) are explained further on (see§5.2
and Figure2).



5. Advanced features

5.1 Splitting specifications over multiple files

Modules Grammar specifications can be split over multiple files. When Menhir is invoked with multiple
argument file names, it considers each of these files as apartial grammar specification, andjoins these partial
specifications in order to obtain a single, complete specification.

This feature is intended to promote a form a modularity. It is hoped that, by splitting large grammar
specifications into several “modules”, they can be made more manageable. It is also hoped that this mechanism,
in conjunction with parameterization (§5.2), will promote sharing and reuse. It should be noted, however, that
this is only a weak form of modularity. Indeed, partial specifications cannot be independently processed (say,
checked for conflicts). It is necessary to first join them, so as to form a complete grammar specification, before
any kind of grammar analysis can be done.

This mechanism is, in fact, how Menhir’s standard library (§5.4) is made available: even though its name
does not appear on the command line, it is automatically joined with the user’s explicitly-provided grammar
specifications, making the standard library’s definitions globally visible.

A partial grammar specification, or module, contains declarations and rules, just like a complete one: there is
no visible difference. Of course, it can consist of only declarations, or only rules, if the user so chooses. (Don’t
forget the mandatory%% keyword that separates declarations and rules. It must be present, even if one of the
two sections is empty.)

Private and public nonterminal symbols It should be noted that joining isnot a purely textual process. If
two modules happen to define a nonterminal symbol by the same name, then it is considered, by default, that
this is an accidental name clash. In that case, each of the two nonterminal symbols is silently renamed so as to
avoid the clash. In other words, by default, a nonterminal symbol defined in moduleA is consideredprivate,
and cannot be defined again, or referred to, in moduleB.

Naturally, it is sometimes desirable to define a nonterminal symbolN in moduleA and to refer to it in
moduleB. This is permitted ifN is public, that is, if either its definition of carries the keyword%public or
N is declared to be a start symbol. A public nonterminal symbol is never renamed, so it can be referred to by
modules other than its defining module.

In fact, it is even permitted to split the definition of a public nonterminal symbol over multiple modules.
That is, a public nonterminal symbolN can have multiple definitions in distinct modules. When the modules
are joined, the definitions are joined as well, using the choice (|) operator. This feature allows splitting
a grammar specification in a manner that is independent of the grammar’s structure. For instance, in the
grammar of a programming language, the definition of the nonterminal symbolexpressioncould be split into
multiple modules, where one module groups the expression forms that have to do with arithmetic, one module
groups those that concern function definitions and function calls, one module groups those that concern object
definitions and method calls, and so on.

Tokens aside Another use of modularity consists in placing all%token declarations in one module, and
the actual grammar specification in another module. The module that contains the token definitions can then
be shared, making it easier to define multiple parsers that accept the same type of tokens. (On this topic, see
demos/calc-two.)

5.2 Parameterizing rules

A rule (that is, the definition of a nonterminal symbol) can be parameterized over an arbitrary number of
symbols, which are referred to as formal parameters.

Example For instance, here is the definition of the parameterized nonterminal symboloption, taken from the
standard library (§5.4):



actual? is syntactic sugar foroption(actual)
actual+ is syntactic sugar fornonemptylist(actual)
actual* is syntactic sugar forlist(actual)

Figure 2. Syntactic sugar for simulating regular expressions

%public option(X):
| { None}
| x = X { Some x}

This definition states thatoption(X) expands to either the empty string, producing the semantic valueNone, or
to the stringX, producing the semantic valueSome x, wherex is the semantic value ofX. In this definition, the
symbolX is abstract: it stands for an arbitrary terminal or nonterminal symbol. The definition is made public,
sooptioncan be referred to within client modules.

A client that wishes to useoption simply refers to it, together with an actual parameter – a symbol that is
intended to replaceX. For instance, here is how one might define a sequence of declarations, preceded with
optional commas:

declarations:
| { [] }
| ds= declarations; option(COMMA); d = declaration{ d :: ds }

This definition states thatdeclarationsexpands either to the empty string or todeclarationsfollowed by an
optional comma followed bydeclaration. (Here,COMMA is presumably a terminal symbol.) When this rule is
encountered, the definition ofoption is instantiated: that is, a copy of the definition, whereCOMMAreplacesX,
is produced. Things behave exactly as if one had written:

optional comma:
| { None}
| x = COMMA{ Some x}

declarations:
| { [] }
| ds= declarations; optional comma; d = declaration{ d :: ds }

Note that, even thoughCOMMA presumably has been declared as a token with no semantic value, writing
x = COMMA is legal, and bindsx to the unit value. This design choice ensures that the definition ofoption
makes sense regardless of the nature ofX: that is,X can be instantiated with a terminal symbol, with or without
a semantic value, or with a nonterminal symbol.

Parameterization in general In general, the definition of a nonterminal symbolN can be parameterized with
an arbitrary number of formal parameters. WhenN is referred to within a production, it must be applied to the
same number of actuals. In general, an actual is:

• either a single symbol, which can be a terminal symbol, a nonterminal symbol, or a formal parameter;
• or an application of such a symbol to a number of actuals.

For instance, here is a rule whose single production consists of a single producer, which contains several,
nested actuals. (This example is discussed again in§5.4.)

plist(X):
| xs= loption(delimited(LPAREN, separatednonemptylist(COMMA, X), RPAREN)) { xs}

Applications of the parameterized nonterminal symbolsoption, nonemptylist, andlist, which are defined in
the standard library (§5.4), can be written using a familiar, regular-expression like syntax (Figure2).



Higher-order parameters A formal parameter can itself expect parameters. For instance, here is a rule that
defines the syntax of procedures in an imaginary programming language:

procedure(list):
| PROCEDURE ID list(formal) SEMICOLON block SEMICOLON{ . . . }

This rule states that the tokenID, which represents the name of the procedure, should be followed with
a list of formal parameters. (The definitions of the nonterminal symbolsformal and block are not shown.)
However, becauselist is a formal parameter, as opposed to a concrete nonterminal symbol defined elsewhere,
this definition does not specify how the list is laid out: which token, if any, is used to separate, or terminate,
list elements? is the list allowed to be empty? and so on. A more concrete notion of procedure is obtained
by instantiating the formal parameterlist: for instance,procedure(plist), where plist is the parameterized
nonterminal symbol defined earlier, is a valid application.

Consistency Definitions and uses of parameterized nonterminal symbols are checked for consistency before
they are expanded away. In short, it is checked that, wherever a nonterminal symbol is used, it is supplied
with actual arguments in appropriate number and of appropriate nature. This guarantees that expansion of
parameterized definitions terminates and produces a well-formed grammar as its outcome.

5.3 Inlining

It is well-known that the following grammar of arithmetic expressions does not work as expected: that is, in
spite of the priority declarations, it has shift/reduce conflicts.

%token < int > INT
%token PLUS TIMES
%left PLUS
%left TIMES

%%

expression:
| i = INT { i }
| e= expression; o = op; f = expression{ o e f }

op:
| PLUS{ ( + ) }
| TIMES{ ( * ) }

The trouble is, the precedence level of the productionexpression→ expression op expressionis undefined, and
there is no sensible way of defining it via a%prec declaration, since the desired level really depends upon the
symbol that was recognized byop: was itPLUSor TIMES?

The standard workaround is to abandon the definition ofop as a separate nonterminal symbol, and to inline
its definition into the definition ofexpression, like this:

expression:
| i = INT { i }
| e= expression; PLUS; f = expression{ e+ f }
| e= expression; TIMES; f = expression{ e * f }

This avoids the shift/reduce conflict, but gives up some of the original specification’s structure, which,
in realistic situations, can be damageable. Fortunately, Menhir offers a way of avoiding the conflict without
manually transforming the grammar, by declaring that the nonterminal symbolopshould be inlined:



Name Recognizes Produces Comment

option(X) ε | X α option, if X : α
ioption(X) ε | X α option, if X : α (inlined)
boption(X) ε | X bool
loption(X) ε | X α list, if X : α list

pair(X, Y) X Y α× β, if X : α andY : β
separatedpair(X, sep, Y) X sep Y α× β, if X : α andY : β
preceded(opening, X) opening X α, if X : α
terminated(X, closing) X closing α, if X : α
delimited(opening, X, closing) opening X closing α, if X : α

list(X) a possibly empty sequence ofX’s α list, if X : α
nonemptylist(X) a nonempty sequence ofX’s α list, if X : α
separatedlist(sep, X) a possibly empty sequence ofX’s

separated withsep’s
α list, if X : α

separatednonemptylist(sep, X) a nonempty sequence ofX’s sep-
arated withsep’s

α list, if X : α

Figure 3. Summary of the standard library

expression:
| i = INT { i }
| e= expression; o = op; f = expression{ o e f }

%inline op:
| PLUS{ ( + ) }
| TIMES{ ( * ) }

The%inline keyword causes all references toop to be replaced with its definition. In this example, the definition
of op involves two productions, one that develops toPLUSand one that expands toTIMES, so every production
that refers toop is effectively turned into two productions, one that refers toPLUSand one that refers toTIMES.
After inlining, op disappears andexpressionhas three productions: that is, the result of inlining is exactly the
manual workaround shown above.

In some situations, inlining can also be help recover a slight efficiency margin. For instance, the definition:

%inline plist(X):
| xs= loption(delimited(LPAREN, separatednonemptylist(COMMA, X), RPAREN)) { xs}

effectively makesplist(X) an alias for the right-hand sideloption(. . .). Without the%inline keyword, the
language recognized by the grammar would be the same, but the LR automaton would probably have one
more state and would perform one more reduction at run time.

5.4 The standard library

Once equipped with a rudimentary module system (§5.1), parameterization (§5.2), and inlining (§5.3), it is
straightforward to propose a collection of commonly used definitions, such as options, sequences, lists, and so
on. Thisstandard libraryis joined, by default, with every grammar specification. A summary of the nonterminal
symbols offered by the standard library appears in Figure3. See also the short-hands documented in Figure2.

By relying on the standard library, a client module can concisely define more elaborate notions. For instance,
the following rule:



%inline plist(X):
| xs= loption(delimited(LPAREN, separatednonemptylist(COMMA, X), RPAREN)) { xs}

causesplist(X) to recognize a list ofX’s, where the empty list is represented by the empty string, and a non-
empty list is delimited with parentheses and comma-separated.

6. Conflicts

When a shift/reduce or reduce/reduce conflict is detected, it is classified as either benign, if it can be resolved
by consulting user-supplied precedence declarations, or severe, if it cannot. Benign conflicts are not reported.
Severe conflicts are reported and, if the--explain switch is on, explained.

6.1 When is a conflict benign?

A shift/reduce conflict involves a single token (the one that one might wish to shift) and one or more productions
(those that might wish to reduce). When such a conflict is detected, the precedence level (§4.1.4, §4.2.1) of these
entities are looked up and compared as follows:

1. if only one production is involved, and if it has higher priority than the token, then the conflict is resolved in
favor of reduction.

2. if only one production is involved, and if it has the same priority as the token, then the associativity status of
the token is looked up:

(a) if the token was declared nonassociative, then the conflict is resolved in favor of neither action, that is, a
syntax error will be signaled if this token shows up when this production is about to be reduced;

(b) if the token was declared left-associative, then the conflict is resolved in favor of reduction;

(c) if the token was declared right-associative, then the conflict is resolved in favor of shifting.

3. if multiple productions are involved, and if, considered one by one, they all cause the conflict to be resolved
in the same way (that is, either in favor in shifting, or in favor of neither), then the conflict is resolved in that
way.

In either of these cases, the conflict is considered benign. Otherwise, it is considered severe. Note that a
reduce/reduce conflict is always considered severe, unless it happens to be subsumed by a benign multi-way
shift/reduce conflict (item3 above).

6.2 How are severe conflicts explained?

When the--dump switch is on, a description of the automaton is written to the.automaton file. Severe conflicts
are shown as part of this description. Fortunately, there is also a way of understanding conflicts in terms of the
grammar, rather than in terms of the automaton. When the--explain switch is on, a textual explanation is
written to the.conflicts file. For brevity, not all conflicts are explained in this file: instead, only one conflict
per automaton state is explained. As a result, once all conflicts explained in the.conflicts file have been
fixed, one might need to run Menhir again to produce yet more conflict explanations.

How the conflict state is reachedFigure4 shows a grammar specification with a typical shift/reduce conflict.
When this specification is analyzed, the conflict is detected, and an explanation is written to the.conflicts
file. The explanation first indicates in which state the conflict lies by showing how that state is reached. Here, it
is reached after recognizing the following string of terminal and nonterminal symbols—theconflict string:

IF expression THEN IF expression THEN expression

Allowing the conflict string to contain both nonterminal and terminal symbols usually makes it shorter and
more readable. If desired, a conflict string composed purely of terminal symbols could be obtained by replacing
each occurrence of a nonterminal symbolN with an arbitraryN -sentence.

The conflict string can be thought of as a path that leads from one of the automaton’s start states to the
conflict state. When multiple such paths exist, the one that is displayed is chosen shortest. Nevertheless, it



%token IF THEN ELSE
%start < expression> expression

%%

expression:
| . . .
| IF b = expression THEN e= expression{ . . . }
| IF b = expression THEN e= expression ELSE f= expression{ . . . }
| . . .

Figure 4. Basic example of a shift/reduce conflict

expression

IF expression THEN expression

IF expression THEN expression ELSE expression

Figure 5. A partial derivation tree that justifies shifting

may sometimes be quite long. In that case, artificially (and temporarily) declaring some existing nonterminal
symbols to be start symbols has the effect of adding new start states to the automaton and can help produce
shorter conflict strings. Here,expressionwas declared to be a start symbol, which is why the conflict string is
quite short.

In addition to the conflict string, the.conflicts file also states that theconflict tokenis ELSE. That is,
when the automaton has recognized the conflict string and when the lookahead token (the next token on the
input stream) isELSE, a conflict arises. A conflict corresponds to a choice: the automaton is faced with several
possible actions, and does not know which one should be taken. This indicates that the grammar is not LR(1).
The grammar may or may not be inherently ambiguous.

In our example, the conflict string and the conflict token are enough to understand why there is a conflict:
when twoIF constructs are nested, it is ambiguous which of the two constructs theELSEbranch should be
associated with. Nevertheless, the.conflicts file provides further information: it explicitly shows that there
exists a conflict, by proving that two distinct actions are possible. Here, one of these actions consists inshifting,
while the other consists inreducing: this is ashift/reduceconflict.

A proof takes the form of apartial derivation treewhosefringe begins with the conflict string, followed
by the conflict token. A derivation tree is a tree whose nodes are labeled with symbols. The root node carries
a start symbol. A node that carries a terminal symbol is considered a leaf, and has no children. A node that
carries a nonterminal symbolN either is considered a leaf, and has no children; or is not considered a leaf, and
hasn children, wheren ≥ 0, labeledx1, . . . , xn, whereN → x1, . . . , xn is a production. The fringe of a partial
derivation tree is the string of terminal and nonterminal symbols carried by the tree’s leaves. A string of terminal
and nonterminal symbols that is the fringe of some partial derivation tree is asentential form.

Why shifting is legal In our example, the proof that shifting is possible is the derivation tree shown in Figures5
and6. At the root of the tree is the grammar’s start symbol,expression. This symbol develops into the string
IF expression THEN expression, which forms the tree’s second level. The second occurrence ofexpressionin
that string develops intoIF expression THEN expression ELSE expression, which forms the tree’s last level.



expression
IF expression THEN expression

IF expression THEN expression. ELSE expression

Figure 6. A textual version of the tree in Figure5

expression

IF expression THEN expression

IF expression THEN expression

ELSE expression

Figure 7. A partial derivation tree that justifies reducing

expression
IF expression THEN expression ELSE expression // lookahead token appears

IF expression THEN expression.

Figure 8. A textual version of the tree in Figure7

The tree’s fringe, a sentential form, is the stringIF expression THEN IF expression THEN expression ELSE
expression. As announced earlier, it begins with the conflict stringIF expression THEN IF expression THEN
expression, followed with the conflict tokenELSE.

In Figure6, the end of the conflict string is materialized with a dot. Note that this dot does not occupy the
rightmost position in the tree’s last level. In other words, the conflict token (ELSE) itself occurs on the tree’s
last level. In practical terms, this means that, after the automaton has recognized the conflict string and peeked
at the conflict token, it makes sense for it toshift that token.

Why reducing is legal In our example, the proof that shifting is possible is the derivation tree shown in
Figures7 and8. Again, the sentential form found at the fringe of the tree begins with the conflict string, followed
with the conflict token.

Again, in Figure8, the end of the conflict string is materialized with a dot. Note that, this time, the dot
occupies the rightmost position in the tree’s last level. In other words, the conflict token (ELSE) appeared on an
earlier level (here, on the second level). This fact is emphasized by the comment// lookahead token appearsfound
at the second level. In practical terms, this means that, after the automaton has recognized the conflict string
and peeked at the conflict token, it makes sense for it toreducethe production that corresponds to the tree’s last
level—here, the production isexpression→ IF expression THEN expression.

An example of a more complex derivation treeFigures9 and10 show a partial derivation tree that justifies
reduction in a more complex situation. (This derivation tree is relative to a grammar that is not shown.) Here,
the conflict string isDATA UIDENT EQUALS UIDENT; the conflict token isLIDENT. It is quite clear that the
fringe of the tree begins with the conflict string. However, in this case, the fringe does not explicitly exhibit the
conflict token. Let us examine the tree more closely and answer the question: followingUIDENT, what’s the
next terminal symbol on the fringe?

First, note thatopt typeexprsis not a leaf node, even though it has no children. The grammar contains the
productionopt typeexprs→ ε: the nonterminal symbolopt typeexprsdevelops to the empty string. (This is



decls

decl

DATA UIDENT EQUALS tycon expr

tycon item

UIDENT opt type exprs

.

opt semi decls

Figure 9. A partial derivation tree that justifies reducing

decls
decl optsemi decls // lookahead token appears because optsemi can vanish and decls can begin with LIDENT

DATA UIDENT EQUALS tyconexpr // lookahead token is inherited

tycon item // lookahead token is inherited

UIDENT opt typeexprs // lookahead token is inherited

.

Figure 10. A textual version of the tree in Figure9

made clear in Figure10, where a single dot appears immediately belowopt typeexprs.) Thus,opt typeexprsis
not part of the fringe.

Next, note thatopt typeexprsis the rightmost symbol within its level. Thus, in order to find the next symbol
on the fringe, we have to look up one level. This is the meaning of the comment// lookahead token is inherited.
Similarly, tycon itemandtyconexprappear rightmost within their level, so we again have to look further up.

This brings us back to the tree’s second level. There,decl is not the rightmost symbol: next to it, we find
opt semianddecls. Does this mean thatopt semiis the next symbol on the fringe? Yes and no.opt semiis a
nonterminalsymbol, but we are really interested in finding out what the nextterminal symbol on the fringe
could be. The partial derivation tree shown in Figures9 and10does not explicitly answer this question. In order
to answer it, we need to know more aboutopt semianddecls.

Here,opt semistands (as one might have guessed) for an optional semicolon, so the grammar contains a
productionopt semi→ ε. This is indicated by the comment// opt semi can vanish. (Nonterminal symbols that
generateε are also said to benullable.) Thus, one could choose to turn this partial derivation tree into a larger
one by developingopt semiinto ε, making it a non-leaf node. That would yield a new partial derivation tree
where the next symbol on the fringe, followingUIDENT, is decls.

Now, what aboutdecls? Again, it is anonterminalsymbol, and we are really interested in finding out what the
next terminalsymbol on the fringe could be. Again, we need to imagine how this partial derivation tree could
be turned into a larger one by developingdecls. Here, the grammar happens to contain a production of the form
decls→ LIDENT. . . This is indicated by the comment// decls can begin with LIDENT. Thus, by developingdecls,
it is possible to construct a partial derivation tree where the next symbol on the fringe, followingUIDENT, is
LIDENT. This is precisely the conflict token.

To sum up, there exists a partial derivation tree whose fringe begins the conflict string, followed with the
conflict token. Furthermore, in that derivation tree, the dot occupies the rightmost position in the last level. As



in our previous example, this means that, after the automaton has recognized the conflict string and peeked at
the conflict token, it makes sense for it toreducethe production that corresponds to the tree’s last level—here,
the production isopt typeexprs→ ε.

6.3 How are severe conflicts resolved in the end?

It is unspecified how severe conflicts are resolved. Menhir attempts to mimicocamlyacc’s specification,
that is, to resolve shift/reduce conflicts in favor of shifting, and to resolve reduce/reduce conflicts in favor
of the production that textually appears earliest in the grammar specification. However, this specification is
inconsistent in case of three-way conflicts, that is, conflicts that simultaneously involve a shift action and several
reduction actions. Furthermore, textual precedence can be undefined when the grammar specification is split
over multiple modules. In short, Menhir’s philosophy is that

severe conflicts should not be tolerated,

so you should not care how they are resolved.

6.4 End-of-stream conflicts

Menhir’s treatment of the end of the token stream is (believed to be) fully compatible withocamlyacc’s. Yet,
Menhir attempts to be more user-friendly by warning about a class of so-called “end-of-stream conflicts”.

How the end of stream is handled In many textbooks on parsing, it is assumed that the lexical analyzer, which
produces the token stream, produces a special token, written#, to signal that the end of the token stream has
been reached. A parser generator can take advantage of this by transforming the grammar: for each start symbol
Sin the original grammar, a new start symbolS’ is defined, together with the productionS′ → S#. The symbol
S is no longer a start symbol in the new grammar. This means that the parser will accept a sentence derived
from S only if it is immediately followed by the end of the token stream.

This approach has the advantage of simplicity. However,ocamlyacc and Menhir do not follow it, for several
reasons. Perhaps the most convincing one is that it is not flexible enough: sometimes, it is desirable to recognize
a sentence derived fromS, without requiring that it be followed by the end of the token stream: this is the case,
for instance, when reading commands, one by one, on the standard input channel. In that case, there no end of
stream: the token stream is conceptually infinite. Furthermore, after a command has been recognized, we donot
wish to examine the next token, because doing so might cause the program to block, waiting for more input.

In short,ocamlyacc and Menhir’s approach is to recognize a sentence derived fromS and tonot look, if
possible, at what follows. However, this is possible only if the definition ofS is such that the end of anS-
sentence is identifiable without knowledge of the lookahead token. When the definition ofS does not satisfy
this criterion, andend-of-stream conflictarises: after a potentialS-sentence has been read, there can be a tension
between consulting the next token, in order to determine whether the sentence is continued, andnot consulting
the next token, because the sentence might be over and whatever follows should not be read. Menhir warns
about end-of-stream conflicts, whereasocamlyacc does not.

A definition of end-of-stream conflicts Technically, Menhir proceeds as follows. A# symbol is introduced.
It is, however, only apseudo-token: it is never produced by the lexical analyzer. For each start symbolS in the
original grammar, a new start symbolS’ is defined, together with the productionS′ → S. The corresponding
start state of the LR(1) automaton is composed of the LR(1) itemS′ → . S [#]. That is, the pseudo-token
# initially appears in the lookahead set, indicating that we expect to be done after recognizing anS-sentence.
During the construction of the LR(1) automaton, this lookahead set is inherited by other items, with the effect
that, in the end, the automaton has:

• shift actions only on physical tokens; and
• reduceactions either on physical tokens or on the pseudo-token#.



A state of the automaton has a reduce action on# if, in that state, anS-sentence has been read, so that the
job is potentially finished. A state has a shift or reduce action on a physical token if, in that state, more tokens
potentially need to be read before anS-sentence is recognized. If a state has a reduce action on#, then that
action should be takenwithout requesting the next token from the lexical analyzer. On the other hand, if a state
has a shift or reduce action on a physical token, then the lookahead tokenmustbe consulted in order to determine
if that action should be taken.

An end-of-stream conflict arises when a state has distinct actions on# and on at least one physical token.
In short, this means that the end of anS-sentence cannot be unambiguously identified without examining one
extra token. Menhir’s default behavior, in that case, is to suppress the action on#, so that more input isalways
requested.

Example Figure 11 shows a grammar that has end-of-stream conflicts. When this grammar is processed,
Menhir warns about these conflicts, and further warns thatexpr is never accepted. Let us explain.

Part of the corresponding automaton, as described in the.conflicts file, is shown in Figure12. Explana-
tions at the end of the.conflicts file (not shown) point out that states 6 and 2 have an end-of-stream conflict.
Indeed, both states have distinct actions on# and on the physical tokenTIMES. It is interesting to note that,
even though state 4 has actions on# and on physical tokens, it does not have an end-of-stream conflict. This is
because the action taken in state 4 is always to reduce the productionexpr→ expr TIMES expr, regardless of
the lookahead token.

By default, Menhir produces a parser where end-of-stream conflicts are resolved in favor of looking ahead:
that is, the problematic reduce actions on# are suppressed. This means, in particular, that theacceptaction
in state 2, which corresponds to reducing the productionexpr→ expr’, is suppressed. This explains why the
symbolexpr is never accepted: because expressions do not have an unambiguous end marker, the parser will
always request one more token and will never stop.

In order to avoid this end-of-stream conflict, the standard solution is to introduce a new token, sayEND, and
to use it as an end marker for expressions. TheEND token could be generated by the lexical analyzer when
it encounters the actual end of stream, or it could correspond to a piece of concrete syntax, say, a line feed
character, a semicolon, or anend keyword. The solution is shown in Figure13.

7. Positions

When anocamllex-generated lexical analyzer produces a token, it updates two fields, namedlex_start_p and
lex_curr_p, in its environment record, whose type isLexing.lexbuf. Each of these fields holds a value of
typeLexing.position. Together, they represent the token’s start and end positions within the text that is being
scanned. A position consists mainly of an offset (the position’spos_cnum field), but also holds information
about the current file name, the current line number, and the current offset within the current line. (Not all
ocamllex-generated analyzers keep this extra information up to date. This must be explicitly programmed by
the author of the lexical analyzer.)

This mechanism allows associating pairs of positions with terminal symbols. If desired, Menhir automatically
extends it to nonterminal symbols as well. That is, it offers a mechanism for associating pairs of positions with
terminal or nonterminal symbols. This is done by making a set of keywords, documented in Figure14, available
to semantic actions. Note that these keywords arenot available elsewhere—in particular, not within Objective
Caml headers. Note also that Objective Caml’s standard library moduleParsing is deprecated. The functions
that it offerscanbe called, but will return dummy positions.

8. Error handling and recovery

Error handling Menhir’s error handling and recovery is inspired by that ofyacc andocamlyacc, but is not
identical. A specialerror token is made available for use within productions. The LR automaton is constructed
exactly as iferror was a regular terminal symbol. However,error is never produced by the lexical analyzer.



%token < int > INT
%token PLUS TIMES
%left PLUS
%left TIMES
%start < int > expr
%%
expr:

| i = INT { i }
| e1= expr PLUS e2= expr{ e1 + e2}
| e1= expr TIMES e2= expr{ e1 * e2}

Figure 11. Basic example of an end-of-stream conflict

State 6:
expr -> expr . PLUS expr [ # TIMES PLUS ]
expr -> expr PLUS expr . [ # TIMES PLUS ]
expr -> expr . TIMES expr [ # TIMES PLUS ]
-- On TIMES shift to state 3
-- On # PLUS reduce production expr -> expr PLUS expr

State 4:
expr -> expr . PLUS expr [ # TIMES PLUS ]
expr -> expr . TIMES expr [ # TIMES PLUS ]
expr -> expr TIMES expr . [ # TIMES PLUS ]
-- On # TIMES PLUS reduce production expr -> expr TIMES expr

State 2:
expr’ -> expr . [ # ]
expr -> expr . PLUS expr [ # TIMES PLUS ]
expr -> expr . TIMES expr [ # TIMES PLUS ]
-- On TIMES shift to state 3
-- On PLUS shift to state 5
-- On # accept expr

Figure 12. Part of an LR automaton for the grammar in Figure11

. . .
%token END
%start < int > main // instead of expr
%%
main:

| e= expr END{ e}
expr:

| . . .

Figure 13. Fixing the grammar specification in Figure11



$startpos start position of the sentence derived out of the production
that is being reduced

$endpos end position of the sentence derived out of the production
that is being reduced

$startpos( $i | id ) start position of the sentence derived out of the symbol
whose semantic value is referred to as$i or id

$endpos( $i | id ) end position of the sentence derived out of the symbol
whose semantic value is referred to as$i or id

$startofs start offset of the sentence derived out of the production
that is being reduced

$endofs end offset of the sentence derived out of the production that
is being reduced

$startofs( $i | id ) start offset of the sentence derived out of the symbol whose
semantic value is referred to as$i or id

$endofs( $i | id ) end offset of the sentence derived out of the symbol whose
semantic value is referred to as$i or id

Figure 14. Position-related keywords

Instead, when an error is detected, the current lookahead token is discarded and replaced with theerror token,
which becomes the current lookahead token. At this point, the parser enterserror handlingmode.

In error handling mode, automaton states are popped off the automaton’s stack until a state that canact on
error is found. This includesbothshift andreduce actions. (yacc andocamlyacc do not trigger reduce actions
onerror. It is somewhat unclear why this is so.)

When a state that can reduce onerror is found, reduction is performed. Since the lookahead token is still
error, the automaton remains in error handling mode.

When a state that can shift onerror is found, theerror token is shifted. At this point, the parser either enters
error recoverymode, if the--error-recovery switch was enabled at compile time, or returns to normal mode.

When no state that can act onerror is found on the automaton’s stack, the parser stops and raises the exception
Error. This exception carries no information. The position of the error can be obtained by reading the lexical
analyzer’s environment record.

Error recovery Error recovery mode is entered immediately after anerror token was successfully shifted,
and only if Menhir’s--error-recovery switch was enabled when the parser was produced. In error recovery
mode, tokens are repeatedly taken off the input stream and discarded until an acceptable token is found. A token
is acceptable if the current state has an action on that token. When an acceptable token is found, the parser
returns to normal mode and the action takes place. Error recovery is also known asre-synchronization.

Error recovery mode is peculiar, in that it can cause non-termination if the token stream is infinite. In practice,
token streams oftenare infinite, due to anocamllex peculiarity: everyocamllex-generated analyzer that maps
the eof pattern to anEOF token will produce an infinite stream ofEOF tokens, even if the underlying text
that is being scanned is finite. In order to address this issue, Menhir attributes special meaning to the token
namedEOF, if there is one in the grammar specification, when--error-recovery is enabled. It checks that
every automaton state that can be reached when in error recovery mode accepts this token, and issues a warning
otherwise. This ensures that the parser always terminates.

Error-related keywords A couple of error-related keywords are made available to semantic actions.
When the$syntaxerror keyword is evaluated, evaluation of the semantic action is aborted, so that the

current reduction is abandoned; the current lookahead token is discarded and replaced with theerror token; and
error handling mode is entered. Note that there is no mechanism for inserting anerror token in front of the



current lookahead token, even though this might also be desirable. It is unclear whether this keyword is useful;
it might be suppressed in the future.

The$previouserror keyword evaluates to an integer value, and indicates how many tokens were success-
fully shifted since the lasterror token was shifted. This allows heuristics such as“when a new error is detected,
do not display a new error message unless the previous error is ancient enough”to be implemented if and where
desired.

When are errors detected?An error is detected when the current state of the automaton has no action on the
current lookahead token. Thus, understanding exactly when errors are detected requires understanding how the
automaton is constructed. Menhir’s construction technique isnot Knuth’s canonical LR(1) technique [9], which
is too expensive to be practical. Instead, Menhirmergesstates [11] and introduces so-calleddefault reductions.
Both techniques candefererror detection by allowing extra reductions to take place before an error is detected.
All LALR(1) parser generators exhibit the same problem.

9. A comparison with ocamlyacc

Here is an incomplete list of the differences betweenocamlyacc and Menhir. The list is roughly sorted by
decreasing order of importance.

• Menhir allows the definition of a nonterminal symbol to be parameterized by other (terminal or nonterminal)
symbols (§5.2). Furthermore, it offers a library of standard parameterized definitions (§5.4), including
options, sequences, and lists. It offers some support for EBNF syntax, via the?, +, and* modifiers.

• ocamlyacc only accepts LALR(1) grammars. Menhir accepts LR(1) grammars, thus avoiding certain
artificial conflicts.

• Menhir’s%inline keyword (§5.3) helps avoid or resolve some LR(1) conflicts without artificial modification
of the grammar.

• Menhir explains conflicts (§6) in terms of the grammar, not just in terms of the automaton. Menhir’s
explanations are believed to be understandable by mere humans.

• Menhir allows grammar specifications to be split over multiple files (§5.1). It also allows several grammars
to share a single set of tokens.

• Menhir produces reentrant parsers.
• Menhir is able to produce parsers that are parameterized by Objective Caml modules.
• ocamlyacc requires semantic values to be referred to via keywords:$1, $2, and so on. Menhir allows

semantic values to be explicitly named.
• Menhir warns about end-of-stream conflicts (§6.4), whereasocamlyacc does not. Menhir warns about

productions that are never reduced, whereas, at least in some cases,ocamlyacc does not.
• Menhir offers an option to typecheck semantic actionsbeforea parser is generated: see--infer.
• ocamlyacc produces tables that are interpreted by a piece of C code, requiring semantic actions to be

encapsulated as Objective Caml closures and invoked by C code. Menhir produces no tables and requires
no C stubs: the generated parser is pure Objective Caml code.

• Menhir makes Objective Caml’s standard library moduleParsing entirely obsolete. Access to locations is
now via keywords (§7). Uses ofraise Parse_error within semantic actions are deprecated. The function
parse_error is deprecated. They are replaced with keywords (§8).

• Menhir’s error handling and error recovery mechanisms (§8) are inspired byocamlyacc’s, but are not
guaranteed to be fully compatible. Error recovery, also known as re-synchronization, is now optional.

• The way in which severe conflicts (§6) are resolved is not guaranteed to be fully compatible withocamlyacc.
• Menhir warns about unused%token, %nonassoc, %left, and%right declarations. It also warns about

%prec annotations that do not help resolve a conflict.



• Menhir accepts Objective Caml-style comments.
• Menhir allows%start and%type declarations to be condensed.
• Menhir allows two (or more) productions to share a single semantic action.
• Menhir produces better error messages when a semantic action contains ill-balanced parentheses.
• ocamlyacc ignores semicolons and commas everywhere. Menhir also ignores semicolons everywhere, but

treats commas as significant. Commas are optional within%token declarations.

10. Questions and Answers

¦ Turning on --infer broke my Makefile! What should I do? Look atdemos/Makefile.shared. It is
meant to be re-used without change. If it does not suit your needs, you can copy parts of it into your own
Makefile, or submit suggestions for improvement.

11. Technical background

After experimenting with Knuth’s canonical LR(1) technique [9], we found that itreally is not practical, even
on today’s computers. For this reason, Menhir implements Pager’s algorithm [11], which merges states on the
fly if it can be proved that no reduce/reduce conflicts will arise as a consequence of this decision. This is how
Menhir avoids the so-calledmysteriousconflicts created by LALR(1) parser generators [5, section 5.7].

Menhir’s algorithm for explaining conflicts is inspired by DeRemer and Pennello’s [4] and adapted for use
with Pager’s construction technique.

Menhir produces code, as opposed to tables. This approach has been explored before [3, 7]. Menhir performs
some static analysis of the automaton in order to produce more compact code.

The type-theoretic tricks that triggered our interest in LR parsers [12] are not implemented in Menhir, because
the Objective Caml compiler does not yet offer the required features. This will hopefully be addressed in the
future.
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