Menhir Reference Manual
(version 20060314)

Francois Pottier Yann &jis-Gianas

INRIA
{Francois.Pottier, Yann.Regis-Gianas}Qinria.fr

Contents

8

9

Foreword
Usage
Lexical conventions

Syntax of grammar specifications

4.1 Declarations
411 Headers e
4.1.2 Parameters.
4.1.3 Tokens. e
4.1.4 Priorityand associativity L.
415 TYPES. . . . e e
416 Startsymbols

4.2 Rules e
4.2.1 Productiongroups.
4.2.2 Productions
423 ProducCers e
424 Actuals.

Advanced features

5.1 Splitting specifications over multiplefiles
5.2 Parameterizingrules.
53 Inlining
5.4 Thestandardlibrary.,
Conflicts

6.1 Whenisaconflictbenign?
6.2 How are severe conflicts explained?.
6.3 How are severe conflicts resolved intheend?
6.4 End-of-streamconflicts o 0L
Positions

Error handling and recovery

A comparison with ocamlyacc

10 Questions and Answers

11 Technical background

10

............ 11

12
12
12
16
16

17

17

20

21

21

1. Foreword

Menhir is a parser generator. It turns high-level grammar specifications, decorated with semantic actions
expressed in the Objective Caml programming languég@k into parsers, again expressed in Objective Caml.

Itis based on Knuth’s LR(1) parser construction techni@lidfis strongly inspired by its precursorgacc [8],

ML-Yacc [13], andocamlyacc [10], but offers a large number of minor and major improvements that make it a
more modern tool.

This brief reference manual explains how to use Menhir. It does not attempt to explain context-free grammars,
parsing, or the LR technique. Readers who have never used a parser generator are encouraged to read about thes
ideas first 1, 2, 6]. They are also invited to have a look at themos directory in Menhir’s distribution.

At this stage, potential users should be warned about two facts. First, Menhir’s feature set is not stable. There
is a tension between preserving a measure of compatibility a¢igmlyacc, on the one hand, and introducing
new ideas, on the other hand. Some aspects of the tool, such as the error handling and recovery mechanism,
are still potentially subject to incompatible changes. Second, the present relaldexiguality. There is much
room for improvement in the tool and in this reference manual. Bug reports and suggestions are welcome!

2. Usage
Menhir is invoked as follows:
menhir option...option filename. .filename

Each of the file names must end witlily and denotes a partial grammar specification. These partial grammar
specifications are joined%.1) to form a single, self-contained grammar specification, which is then processed.
A number of optional command line switches allow controlling many aspects of the process.

--base basename This switch controls the base name of thel and .mli files that are produced.
That is, the tool will produce files namdthsenamenl andbasenamenli. Note thatbasenamean contain
occurrences of thé character, so it really specifies a path and a base name. When orilieaaenés provided
on the command line, the defallasenameés obtained by deprivindilenameof its final .m1y suffix. When
multiple file names are provided on the command line, no default base name exists, so thattweswitch
mustbe used.

--comment. This switch causes a few comments to be inserted into the Objective Caml code that is written
to the .m1 file.

--depend. This switch causes Menhir to generate dependency information for use in conjunction with
make. When invoked in this mode, Menhir does not generate a parser. Instead, it examines the grammar specifi-
cation and prints a list of prerequisites for the tardetsenamecm [0ix], basenamenl, andbasenamenli.

This list is intended to be textually included withirMakefile. It is important to note thatasenamenl and
basenamenli can have.cm[iox] prerequisites. This is because, when theénfer switch is used, Menhir
infers types by invokingcamlc, andocamlc itself requires the Objective Caml modules that the grammar
specification depends upon to have been compiled first. Thédfiles/Makefile.shared helps exploits the
--depend switch.

When in--depend mode, Menhir computes dependencies by invokiagmldep. The command that is
used to rurocamldep is controlled by the--ocamldep switch.

--dump. This switch causes a description of the automaton to be written to tHeBknameautomaton.
--error-recovery. This switch causes error recovery code to be generated. Error recovery, also known
as re-synchronization, consists in dropping tokens off the input stream, after an error has been detected, until

a token that can be shifted in the current state is found. This behavior is made optional because it is seldom
exploited and requires extra code in the parser. Seg;also

--explain. This switch causes conflict explanations to be written to thebfilgenameconflicts. See
also§6.

--external-tokens T. This switch causes the definition of theken type to be omitted ithasenamenl
andbasenamenli. Instead, the generated parser relies on the ypeoken, whereT is an Objective Caml
module name. It is up to the user to define modiiland to make sure that it exports a suitabdg&en type.
ModuleT can be hand-written. It can also be automatically generated out of a grammar specification using the
--only-tokens switch.

—--infer. This switch causes the semantic actions to be checked for type consibtfoagthe parser is
generated. This is done by invoking the Objective Caml compiler. Useffer is strongly recommended
because it helps obtain consistent, well-located type error messages, especially when advanced features such as
Menhir's standard library o%inline keyword are exploited. One downside-ofinfer is that the Objective
Caml compiler usually needs to consult a fewn [i0x] files. This means that these files must have been created
first, requiringMakefile changes and use of thedepend switch.

--log-automaton level Whenlevelis nonzero, this switch causes some information about the automaton
to be logged to the standard error channel.

--log-code level Whenlevelis nonzero, this switch causes some information about the generated Objec-
tive Caml code to be logged to the standard error channel.

--log-grammar level Whenlevelis nonzero, this switch causes some information about the grammar to be
logged to the standard error channel. Whesrelis 2, thenullable, FIRST, andFOLLOW tables are displayed.

--no-inline. This switch causes a¥loinline keywords in the grammar specification to be ignored. This
is especially useful in order to understand whether these keywords help solve any conflicts.

--no-stdlib. This switch causes the standard librargt to be implicitly joined with the grammar
specifications whose names are explicitly provided on the command line.

--ocamlc command This switch controls howcamlc is invoked (when--infer is used). It allows setting
both the name of the executable and the command line options that are passed to it.

--ocamldep command This switch controls howcamldep is invoked (when--depend is used). It allows
setting both the name of the executable and the command line options that are passed to it.

--only-preprocess. This switch causes the grammar specifications to be transformed up to the point
where the automaton’s construction can begin. The grammar specifications whose names are provided on
the command line are joinedq.1); all parameterized nonterminal symbols are expanded af@&g){ type
inference is performed, F-infer is enabled; all nonterminal symbols mark@ginline are expanded away
(8§5.3). This yields a single, monolithic grammar specification, which is printed on the standard output channel.

--only-tokens. This switch causes tHtoken declarations in the grammar specification to be translated
into a definition of thecoken type, which is written to the filebasenamenl andbasenamenli. No code is
generated. This is useful when a single set of tokens is to be shared between several parsers. The directory
demos/calc-two contains a demo that illustrates the use of this switch.

--timings. This switch causes internal timing information to be sent to the standard error channel.

--trace. This switch causes tracing code to be inserted into the generated parser, so that, when the parser
is run, its actions are logged to the standard error channel. This is analogetsniiorun’s p=1 parameter,
except this switch must be enabled at compile time: one cannot selectively enable or disable tracing at runtime.

--stdlib directory. This switch controls the directory where the standard library is found. It allows
overriding the default directory that is set at installation time. The trajlicgaracter is optional.

--version. This switch causes Menhir to print its own version number and exit.

specification:= declaration. .. declaration%% rule ... rule [%% Objective Caml code
declaration::= %{ Objective Cam| cod&o }
Y%parameter < uid : Objective Caml module type
%token [< Objective Caml type-| uid ... uid
%nonassoc uid ... uid
%left uid ... uid
%right uid ... uid
%type < Objective Caml type- lid ... lid

%start [< Objective Caml type-] lid ... lid
rule ::= [%public] [%inline] lid [(id, ...,id)]:[|] group]| ... | group
group::= production| ... | production{ Objective Caml codé¢ [%prec id |
production::= producer ... producer| %prec id |
producer::= [lid =] actual
actual::=id [(actual ...,actual)] [? |+ | *]

Figure 1. Syntax of grammar specifications

3. Lexical conventions
The semicolon charactey) (is treated as insignificant, just like white space. Thus, rules and producers (for
instance) can be separated with semicolons if it is thought that this improves readability. They can be omitted

otherwise.

Identifiers {d) coincide with Objective Caml identifiers, except they are not allowed to contain the duote (
character. Following Objective Caml, identifiers that begin with a lowercase |&tigo¢ with an uppercase
letter (uid) are distinguished.

Comments are C-style (surrounded wijth and */, cannot be nested), C++-style (announced/pynd
extending until the end of the line), or Objective Caml-style (surrounded (#itand *), can be nested). Of
course, inside Objective Caml code, only Objective Caml-style comments are allowed.

Objective Caml type expressions are surrounded withnd >. Within such expressions, all references to
type constructors (other than the builthist, option etc.) must be fully qualified.

4. Syntax of grammar specifications

The syntax of grammar specifications appears in Figu(Eor compatibility withocamlyacc, some specifica-
tions that do not fully adhere to this syntax are also accepted.)

4.1 Declarations
A specification file begins with a sequence of declarations, ended by a mantie#srigeyword.

41.1 Headers

A header is a piece of Objective Caml code, surrounded %frand% }. It is copied verbatim at the beginning

of the .m1 file. It typically contains Objective Camdpen directives and function definitions for use by the
semantic actions. If a single grammar specification file contains multiple headers, their order is preserved.
However, when two headers originate in distinct grammar specification files, the order in which they are copied
to the .m1 file is unspecified.

4.1.2 Parameters
A declaration of the form:

Y%parameter < uid : Objective Caml module type

causes the entire parser to become parameterized over the Objective Caml middthat is, to become

an Objective Caml functor. If a single specification file contains multffiparameter declarations, their

order is preserved, so that the module naritkintroduced by one declaration is effectively in scope in the
declarations that follow. When twi#parameter declarations originate in distinct grammar specification files,
the order in which they are processed is unspecified. Laptrameter declarations take effect befo?e{ . ..

%}, Y%token, %type, or Y%start declarations are considered, so that the module nachatroduced by a
%parameter declaration is effectively in scope all %{ ... %}, %token, %type, or %start declarations,
regardless of whether they precede or follow %@arameter declaration. This means, in particular, that the
side effects of an Objective Caml header are observed only when the functor is applied, not when it is defined.

4.1.3 Tokens
A declaration of the form:
%token | < Objective Caml type- | uidy, . .., uid,

defines the identifiersid,, . . . , uid,, as tokens, that is, as terminal symbols in the grammar specification and as
data constructors in thiekentype. If an Objective Caml typeis present, then these tokens are considered to
carry a semantic value of typeotherwise they are considered to carry no semantic value.

4.1.4 Priority and associativity
A declaration of one of the following forms:

%nonassoc uid; . . . uid,
%left uid; . . .uid,
%right uid; .. . uid,

attributes both griority level and anassociativity statuso the symbolsuidy, ..., uid,. The priority level
assigned tauidy, ..., uid, is not defined explicitly: instead, it is defined to be higher than the priority level
assigned by the previo®nonassoc, %left, or %right declaration, and lower than that assigned by the next
%nonassoc, %left, or %right declaration. The symbolsd;, . . ., uid, can be tokens (defined elsewhere by a
%token declaration) or dummies (not defined anywhere). Both can be referred to as f@ptet annotations.
Associativity status and priority levels allow shift/reduce conflicts to be silently resof@d (

4.1.5 Types
A declaration of the form:

%type < Objective Caml type- lid; ... lid,,
assigns an Objective Caml type to each of the nonterminal syrifdgJs. ., lid,,. For start symbols, providing
an Objective Caml type is mandatory, but is usually done as part §fltart declaration. For other symbols,
it is optional. Providing type information can improve the quality of Objective Caml’s type error messages.
4.1.6 Start symbols
A declaration of the form:

%start [< Objective Caml type-] lid; ... lid,,

declares the nonterminal symbdid,, ..., lid,, to be start symbols. Each such symbol must be assigned an
Objective Caml type either as part of tH@start declaration or via separafébtype declarations. Each of
lidq,...,lid, becomes the name of a function whose signature is published im1hefile and that can be used

to invoke the parser.

4.2 Rules

Following the mandatorn$% keyword, a sequence of rules is expected. Each rule defines a nonterminal
symbolid. In its simplest form, a rule begins wiil, followed by a colon character)(and continues with

a sequence of production grougg @.1). Each production group is preceded with a vertical bar charagter (
the very first bar is optional. The meaning of the bar is choice: the nonterminal syand@elops to either of
the production groups. We defer explanations of the keyWgpdiblic (§5.1), of the keyword%inline (§5.3),
and of the optional formal parametdrsl, ..., id) (§5.2).

4.2.1 Production groups

In its simplest form, a production group consists of a single productjdr2 @, followed by an Objective

Caml semantic actior§4.2.1) and an optiona?eprec annotation §4.2.1). A production specifies a sequence of
terminal and nonterminal symbols that should be recognized, and optionally binds identifiers to their semantic
values.

Semantic actions A semantic action is a piece of Objective Caml code that is executed in order to assign a
semantic value to the nonterminal symbol with which this production group is associated. A semantic action
can refer to the (already computed) semantic values of the terminal on nonterminal symbols that appear in
the production via the semantic value identifiers bound by the production. For compatibilityasithyacc,
semantic actions can also refer to these semantic values via positional keywords of ti$d f@2netc. This

style is discouraged.

%prec annotations An annotation of the forn$prec uid indicates that the precedence level of the produc-

tion group is the level assigned to the symbal via a previousYenonassoc, %left, or %right declaration

(84.1.9. In the absence of %prec annotation, the precedence level assigned to each production is the level
assigned to the rightmost terminal symbol that appears in it. It is undefined if the rightmost terminal symbol has
an undefined precedence level or if the production mentions no terminal symbols at all. The precedence level
assigned to a production is used when resolving shift/reduce con§iigts (

Multiple productions in a group If multiple productions are present in a single group, then the semantic action
and precedence annotation are shared between them. This short-hand effectively allows several productions to
share a semantic action and precedence annotation without requiring textual duplication. It is legal only when
every production binds exactly the same set of semantic value identifiers and when no positional semantic value
keywords $1, etc.) are used.

4.2.2 Productions

A production is a sequence of produce$d.R.3, optionally followed by a%prec annotation §4.2.1). It a
precedence annotation is present, it applies to this production alone, not to other productions in the production
group. Itis illegal for a production and its production group to both c&6grec annotations.

4.2.3 Producers

A producer is an actua$d.2.4), optionally preceded with a binding of a semantic value identifier, of the fidrm

=. The actual specifies which construction should be recognized and how a semantic value should be computed
for that construction. The identifiéid, if present, becomes bound to that semantic value in the semantic action
that follows. Otherwise, the semantic value can be referred to via a positional key$ioetd.).

4.2.4 Actuals
In its simplest form, an actual simply consists of a terminal or nonterminal symbol. The optional actual
parameterq actual ..., actual) and the optional modifier?(4, or *) are explained further on (s&®.2

and Figure?).

5. Advanced features
5.1 Splitting specifications over multiple files

Modules Grammar specifications can be split over multiple files. When Menhir is invoked with multiple
argument file names, it considers each of these filespastal grammar specification, andins these partial
specifications in order to obtain a single, complete specification.

This feature is intended to promote a form a modularity. It is hoped that, by splitting large grammar
specifications into several “modules”, they can be made more manageable. It is also hoped that this mechanism,
in conjunction with parameterizatio§g.2), will promote sharing and reuse. It should be noted, however, that
this is only a weak form of modularity. Indeed, partial specifications cannot be independently processed (say,
checked for conflicts). It is necessary to first join them, so as to form a complete grammar specification, before
any kind of grammar analysis can be done.

This mechanism is, in fact, how Menhir's standard libra§¥.4) is made available: even though its name
does not appear on the command line, it is automatically joined with the user’s explicitly-provided grammar
specifications, making the standard library’s definitions globally visible.

A partial grammar specification, or module, contains declarations and rules, just like a complete one: there is
no visible difference. Of course, it can consist of only declarations, or only rules, if the user so chooses. (Don't
forget the mandator§% % keyword that separates declarations and rules. It must be present, even if one of the
two sections is empty.)

Private and public nonterminal symbols It should be noted that joining isot a purely textual process. If
two modules happen to define a nonterminal symbol by the same name, then it is considered, by default, that
this is an accidental name clash. In that case, each of the two nonterminal symbols is silently renamed so as to
avoid the clash. In other words, by default, a nonterminal symbol defined in mddisieonsideregrivate,
and cannot be defined again, or referred to, in module

Naturally, it is sometimes desirable to define a nonterminal symbdah module A and to refer to it in
module B. This is permitted ifNV is public, that is, if either its definition of carries the keywdspublic or
N is declared to be a start symbol. A public nonterminal symbol is never renamed, so it can be referred to by
modules other than its defining module.

In fact, it is even permitted to split the definition of a public nonterminal symbol over multiple modules.
That is, a public nonterminal symb@l can have multiple definitions in distinct modules. When the modules
are joined, the definitions are joined as well, using the chojgegerator. This feature allows splitting
a grammar specification in a manner that is independent of the grammar’s structure. For instance, in the
grammar of a programming language, the definition of the nonterminal syexpedssiorcould be split into
multiple modules, where one module groups the expression forms that have to do with arithmetic, one module
groups those that concern function definitions and function calls, one module groups those that concern object
definitions and method calls, and so on.

Tokens aside Another use of modularity consists in placing &token declarations in one module, and

the actual grammar specification in another module. The module that contains the token definitions can then
be shared, making it easier to define multiple parsers that accept the same type of tokens. (On this topic, see
demos/calc-two.)

5.2 Parameterizing rules

A rule (that is, the definition of a nonterminal symbol) can be parameterized over an arbitrary number of
symbols, which are referred to as formal parameters.

Example For instance, here is the definition of the parameterized nonterminal syiptioh, taken from the
standard libraryq5.4):

actual? is syntactic sugar foloptionactual)
actuaHl- is syntactic sugar fononemptyist(actual)
actuaf is syntactic sugar fotist(actual)

Figure 2. Syntactic sugar for simulating regular expressions

%public option(X):

| { None}

| x=X{Somex
This definition states thatption(X) expands to either the empty string, producing the semantic Wdne or
to the stringX, producing the semantic vallBme xwherex is the semantic value of. In this definition, the
symbolX is abstract: it stands for an arbitrary terminal or nonterminal symbol. The definition is made public,
sooptioncan be referred to within client modules.

A client that wishes to useption simply refers to it, together with an actual parameter — a symbol that is

intended to replac&. For instance, here is how one might define a sequence of declarations, preceded with
optional commas:

declarations

{0}
| ds=declarations optionlCOMMA); d = declaration{ d:: ds }

This definition states thateclarationsexpands either to the empty string ordeclarationsfollowed by an
optional comma followed bgeclaration (Here, COMMAIis presumably a terminal symbol.) When this rule is
encountered, the definition optionis instantiated: that is, a copy of the definition, wh€&@MMAreplacesX,

is produced. Things behave exactly as if one had written:

optionalcomma

| { None}

| x=COMMA{ Some %
declarations

{0}

| ds=declarationsoptionalcommad = declaration{ d:: ds }

Note that, even thoug@OMMA presumably has been declared as a token with no semantic value, writing
x = COMMAs legal, and bindx to the unit value. This design choice ensures that the definitiaptdn
makes sense regardless of the natung:dhat is,X can be instantiated with a terminal symbol, with or without

a semantic value, or with a nonterminal symbol.

Parameterization in general In general, the definition of a nonterminal symdlcan be parameterized with
an arbitrary number of formal parameters. Wh€éns referred to within a production, it must be applied to the
same number of actuals. In general, an actual is:

e either a single symbol, which can be a terminal symbol, a nonterminal symbol, or a formal parameter;

e or an application of such a symbol to a number of actuals.

For instance, here is a rule whose single production consists of a single producer, which contains several,
nested actuals. (This example is discussed agdjh.#)
plist(X):
| xs=loption(delimitedLPAREN separatedhonemptylist(COMMA, X), RPAREN) { xs }

Applications of the parameterized nonterminal symlogon nonemptyist, andlist, which are defined in
the standard library6b.4), can be written using a familiar, regular-expression like syntax (Figure

Higher-order parameters A formal parameter can itself expect parameters. For instance, here is a rule that
defines the syntax of procedures in an imaginary programming language:

procedurglist):
| PROCEDURE ID ligformal) SEMICOLON block SEMICOLON. .. }

This rule states that the tokd®, which represents the name of the procedure, should be followed with

a list of formal parameters. (The definitions of the nonterminal symfusteal and block are not shown.)
However, becauskist is a formal parameter, as opposed to a concrete nonterminal symbol defined elsewhere,
this definition does not specify how the list is laid out: which token, if any, is used to separate, or terminate,
list elements? is the list allowed to be empty? and so on. A more concrete notion of procedure is obtained
by instantiating the formal parametést: for instance,proceduréplist), where plist is the parameterized
nonterminal symbol defined earlier, is a valid application.

Consistency Definitions and uses of parameterized nonterminal symbols are checked for consistency before

they are expanded away. In short, it is checked that, wherever a nonterminal symbol is used, it is supplied

with actual arguments in appropriate hnumber and of appropriate nature. This guarantees that expansion of
parameterized definitions terminates and produces a well-formed grammar as its outcome.

5.3 Inlining

It is well-known that the following grammar of arithmetic expressions does not work as expected: that is, in
spite of the priority declarations, it has shift/reduce conflicts.

%token < int > INT
%token PLUS TIMES
%left PLUS

%left TIMES

%%
expression

| i=INT{i}

| e=expressiono=op;f =expressiof oef}
op:

| PLUS{(+)}

| TIMES{(*) }

The trouble is, the precedence level of the productipression— expression op expressigundefined, and
there is no sensible way of defining it vidaprec declaration, since the desired level really depends upon the
symbol that was recognized loyp: was itPLUSor TIMES?

The standard workaround is to abandon the definitioopds a separate nonterminal symbol, and to inline
its definition into the definition oéxpressionlike this:

expression
| i=INT{i}
| e=expressionPLUS f = expressior{ e+ f }
| e=expressionTIMES f = expressioq e* f }

This avoids the shift/reduce conflict, but gives up some of the original specification’s structure, which,
in realistic situations, can be damageable. Fortunately, Menhir offers a way of avoiding the conflict without
manually transforming the grammar, by declaring that the nonterminal syoptsblould be inlined:

Name Recognizes Produces Comment

option(X) el X a option, if X: «
ioption(X) el X a option if X: « (inlined)
boption(X) el X bool
loption(X) el X alist, if X« list
pair(X, Y) XY ax B,if X:aandY: g
separatedpair(X, sep Y) XsepY ax @,if X:aandY: s
precede@opening X) opening X o, if X«
terminatedX, closing X closing a,if X«
delimitedopening X, closing opening X closing o, if X«
list(X) a possibly empty sequenceXt «list, if X: «
nonemptylist(X) a nonempty sequence Xfs alist, if X «
separatedist(sep X) a possibly empty sequenceXt «list, if X : «
separated witlseps
separatednonemptylist(sep X) a nonempty sequence Hfs sep- « list, if X: «
arated withseps

Figure 3. Summary of the standard library

expression

| i=INT{i}

| e=expressiono=op;f =expressiof oef}
%inline op:

| PLUS{(+)}

| TIMES{(*) }

The%inline keyword causes all referencespto be replaced with its definition. In this example, the definition
of opinvolves two productions, one that develop#tdJSand one that expands TOMES so every production
that refers tapis effectively turned into two productions, one that referBtdJSand one that refers fBIMES
After inlining, op disappears anedxpressiorhas three productions: that is, the result of inlining is exactly the
manual workaround shown above.

In some situations, inlining can also be help recover a slight efficiency margin. For instance, the definition:

%inline plist(X):
| xs=loption(delimited LPAREN separatednonemptyist(COMMA X), RPAREN) { xs }

effectively makesplist(X) an alias for the right-hand sideption(...). Without the %inline keyword, the
language recognized by the grammar would be the same, but the LR automaton would probably have one
more state and would perform one more reduction at run time.

5.4 The standard library

Once equipped with a rudimentary module systém1), parameterization§b.2), and inlining €5.3), it is
straightforward to propose a collection of commonly used definitions, such as options, sequences, lists, and so
on. Thisstandard libraryis joined, by default, with every grammar specification. A summary of the nonterminal
symbols offered by the standard library appears in Fiuf&ee also the short-hands documented in Figure

By relying on the standard library, a client module can concisely define more elaborate notions. For instance,
the following rule:

%inline plist(X):
| xs=loption(delimited LPAREN separatednonemptylistf(COMMA X), RPAREN) { xs }
causedlist(X) to recognize a list oK’s, where the empty list is represented by the empty string, and a non-
empty list is delimited with parentheses and comma-separated.

6. Conflicts

When a shift/reduce or reduce/reduce conflict is detected, it is classified as either benign, if it can be resolved
by consulting user-supplied precedence declarations, or severe, if it cannot. Benign conflicts are not reported.
Severe conflicts are reported and, if theexplain Switch is on, explained.

6.1 Whenis a conflict benign?

A shift/reduce conflict involves a single token (the one that one might wish to shift) and one or more productions
(those that might wish to reduce). When such a conflict is detected, the precedendgllévlsd.2.]) of these
entities are looked up and compared as follows:

1. if only one production is involved, and if it has higher priority than the token, then the conflict is resolved in
favor of reduction.

2. if only one production is involved, and if it has the same priority as the token, then the associativity status of
the token is looked up:

(a) if the token was declared nonassociative, then the conflict is resolved in favor of neither action, that is, a
syntax error will be signaled if this token shows up when this production is about to be reduced;

(b) if the token was declared left-associative, then the conflict is resolved in favor of reduction;
(c) if the token was declared right-associative, then the conflict is resolved in favor of shifting.

3. if multiple productions are involved, and if, considered one by one, they all cause the conflict to be resolved
in the same way (that is, either in favor in shifting, or in favor of neither), then the conflict is resolved in that
way.

In either of these cases, the conflict is considered benign. Otherwise, it is considered severe. Note that a
reduce/reduce conflict is always considered severe, unless it happens to be subsumed by a benign multi-way
shift/reduce conflict (itend above).

6.2 How are severe conflicts explained?

When the--dump switch is on, a description of the automaton is written to.thetomaton file. Severe conflicts

are shown as part of this description. Fortunately, there is also a way of understanding conflicts in terms of the
grammar, rather than in terms of the automaton. When-theplain switch is on, a textual explanation is
written to the. conflicts file. For brevity, not all conflicts are explained in this file: instead, only one conflict

per automaton state is explained. As a result, once all conflicts explained irkdh€élicts file have been

fixed, one might need to run Menhir again to produce yet more conflict explanations.

How the conflict state is reached Figure4 shows a grammar specification with a typical shift/reduce conflict.
When this specification is analyzed, the conflict is detected, and an explanation is written todfi@icts

file. The explanation first indicates in which state the conflict lies by showing how that state is reached. Here, it
is reached after recognizing the following string of terminal and nonterminal symbolssettffigct string

IF expression THEN IF expression THEN expression

Allowing the conflict string to contain both nonterminal and terminal symbols usually makes it shorter and
more readable. If desired, a conflict string composed purely of terminal symbols could be obtained by replacing
each occurrence of a nonterminal symbbith an arbitrary/N-sentence.

The conflict string can be thought of as a path that leads from one of the automaton’s start states to the
conflict state. When multiple such paths exist, the one that is displayed is chosen shortest. Nevertheless, it

%token IF THEN ELSE
Y%start < expression> expression

%%
expression

| ...

| IF b =expression THEN e expressior{ ... }

| IF b =expression THEN e expression ELSE f expressiof ... }
|

Figure 4. Basic example of a shift/reduce conflict

expression

N\ T~

IF expression THEN expression

— N T

IF expression THEN expression ELSE expression

Figure 5. A partial derivation tree that justifies shifting

may sometimes be quite long. In that case, artificially (and temporarily) declaring some existing nonterminal
symbols to be start symbols has the effect of adding new start states to the automaton and can help produce
shorter conflict strings. Herexpressiorwas declared to be a start symbol, which is why the conflict string is
quite short.

In addition to the conflict string, theconflicts file also states that theonflict tokenis ELSE That is,
when the automaton has recognized the conflict string and when the lookahead token (the next token on the
input stream) i€LSE a conflict arises. A conflict corresponds to a choice: the automaton is faced with several
possible actions, and does not know which one should be taken. This indicates that the grammar is not LR(1).
The grammar may or may not be inherently ambiguous.

In our example, the conflict string and the conflict token are enough to understand why there is a conflict:
when twolF constructs are nested, it is ambiguous which of the two constructSltB& branch should be
associated with. Nevertheless, theonflicts file provides further information: it explicitly shows that there
exists a conflict, by proving that two distinct actions are possible. Here, one of these actions cosBiftiagn
while the other consists ireducing this is ashift/reduceconflict.

A proof takes the form of gartial derivation treewhosefringe begins with the conflict string, followed
by the conflict token. A derivation tree is a tree whose nodes are labeled with symbols. The root node carries
a start symbol. A node that carries a terminal symbol is considered a leaf, and has no children. A node that
carries a nonterminal symb@l either is considered a leaf, and has no children; or is not considered a leaf, and
hasn children, wherex > 0, labeledx, ..., X,, whereN — Xy, ..., X, is a production. The fringe of a partial
derivation tree is the string of terminal and nonterminal symbols carried by the tree’s leaves. A string of terminal
and nonterminal symbols that is the fringe of some partial derivation tregastantial form

Why shifting islegal In our example, the proof that shifting is possible is the derivation tree shown in Figures
and6. At the root of the tree is the grammar’s start symigaipressionThis symbol develops into the string
IF expression THEN expressiowhich forms the tree’s second level. The second occurrenegpréssiorin

that string develops inttF expression THEN expression ELSE expresswdmch forms the tree’s last level.

expression
IF expression THEN expression
IF expression THEN expressioELSE expression

Figure 6. A textual version of the tree in Figuge

expression

PN

expression THEN expression ELSE expression

7\ T~

IF expression THEN expression

Figure 7. A partial derivation tree that justifies reducing

expression
IF expression THEN expression ELSE expression Il lookahead token appears
IF expression THEN expression

Figure 8. A textual version of the tree in Figuié

The tree’s fringe, a sentential form, is the strilkgexpression THEN IF expression THEN expression ELSE
expressionAs announced earlier, it begins with the conflict strliRgexpression THEN IF expression THEN
expressionfollowed with the conflict tokefELSE

In Figure6, the end of the conflict string is materialized with a dot. Note that this dot does not occupy the
rightmost position in the tree’s last level. In other words, the conflict tokESE itself occurs on the tree’s
last level. In practical terms, this means that, after the automaton has recognized the conflict string and peeked
at the conflict token, it makes sense for istuft that token.

Why reducing is legal In our example, the proof that shifting is possible is the derivation tree shown in
Figures7 and8. Again, the sentential form found at the fringe of the tree begins with the conflict string, followed
with the conflict token.

Again, in Figure8, the end of the conflict string is materialized with a dot. Note that, this time, the dot
occupies the rightmost position in the tree’s last level. In other words, the conflict tBk&tfappeared on an
earlier level (here, on the second level). This fact is emphasized by the comreiahead token appearfound
at the second level. In practical terms, this means that, after the automaton has recognized the conflict string
and peeked at the conflict token, it makes sense forédacethe production that corresponds to the tree’s last
level—here, the production expression— IF expression THEN expression

An example of a more complex derivation treeFigures9 and10 show a partial derivation tree that justifies
reduction in a more complex situation. (This derivation tree is relative to a grammar that is not shown.) Here,
the conflict string iDATA UIDENT EQUALS UIDENTthe conflict token id IDENT. It is quite clear that the
fringe of the tree begins with the conflict string. However, in this case, the fringe does not explicitly exhibit the
conflict token. Let us examine the tree more closely and answer the question: folloW&INT, what's the
next terminal symbol on the fringe?

First, note thabpt type exprsis not a leaf node, even though it has no children. The grammar contains the
productionopt.type exprs — e: the nonterminal symbadpt type exprsdevelops to the empty string. (This is

decls

N

decl opt_semi decls

//\

DATA UIDENT EQUALS tycon_expr

tycon_item

UIDENT opt_type_exprs

Figure 9. A partial derivation tree that justifies reducing

decls
decl optsemi decls Il lookahead token appears because a@mi can vanish and decls can begin with LIDENT
DATA UIDENT EQUALS tycaexpr /l'lookahead token is inherited

tyconitem I lookahead token is inherited

UIDENT opttypeexprs /I lookahead token is inherited

Figure 10. A textual version of the tree in Figu@e

made clear in Figur&0, where a single dot appears immediately betpiitype exprs) Thus,opt.typeexprsis
not part of the fringe.

Next, note thabpt type exprsis the rightmost symbol within its level. Thus, in order to find the next symbol
on the fringe, we have to look up one level. This is the meaning of the commesMahead token is inherited
Similarly, tyconitemandtyconexprappear rightmost within their level, so we again have to look further up.

This brings us back to the tree’s second level. Thdeg| is not the rightmost symbol: next to it, we find
opt.semianddecls Does this mean thatpt semiis the next symbol on the fringe? Yes and ppt.semiis a
nonterminalsymbol, but we are really interested in finding out what the mesthinal symbol on the fringe
could be. The partial derivation tree shown in Fig@esd10 does not explicitly answer this question. In order
to answer it, we need to know more abopt semianddecls

Here,opt.semistands (as one might have guessed) for an optional semicolon, so the grammar contains a
productionopt semi — ¢. This is indicated by the commentoptsemi can vanish (Nonterminal symbols that
generate are also said to beullable) Thus, one could choose to turn this partial derivation tree into a larger
one by developingpt.semiinto ¢, making it a non-leaf node. That would yield a new partial derivation tree
where the next symbol on the fringe, followikjDENT, is decls

Now, what aboutlecl® Again, it is anonterminalsymbol, and we are really interested in finding out what the
nextterminal symbol on the fringe could be. Again, we need to imagine how this partial derivation tree could
be turned into a larger one by developihecls Here, the grammar happens to contain a production of the form
decls— LIDENT... This is indicated by the commeitiecls can begin with LIDENT Thus, by developingecls
it is possible to construct a partial derivation tree where the next symbol on the fringe, folloMIHENT, is
LIDENT. This is precisely the conflict token.

To sum up, there exists a partial derivation tree whose fringe begins the conflict string, followed with the
conflict token. Furthermore, in that derivation tree, the dot occupies the rightmost position in the last level. As

in our previous example, this means that, after the automaton has recognized the conflict string and peeked at
the conflict token, it makes sense for itreducethe production that corresponds to the tree’s last level—here,
the production i®pttypeexprs— e.

6.3 How are severe conflicts resolved in the end?

It is unspecified how severe conflicts are resolved. Menhir attempts to migaielyacc’s specification,

that is, to resolve shift/reduce conflicts in favor of shifting, and to resolve reduce/reduce conflicts in favor
of the production that textually appears earliest in the grammar specification. However, this specification is
inconsistent in case of three-way conflicts, that is, conflicts that simultaneously involve a shift action and several
reduction actions. Furthermore, textual precedence can be undefined when the grammar specification is split
over multiple modules. In short, Menhir’s philosophy is that

severe conflicts should not be tolerated,

so you should not care how they are resolved.

6.4 End-of-stream conflicts

Menhir's treatment of the end of the token stream is (believed to be) fully compatiblew4dtilyacc’s. Yet,
Menhir attempts to be more user-friendly by warning about a class of so-called “end-of-stream conflicts”.

How the end of stream is handled In many textbooks on parsing, it is assumed that the lexical analyzer, which
produces the token stream, produces a special token, wytaa signal that the end of the token stream has

been reached. A parser generator can take advantage of this by transforming the grammar: for each start symbol
Sin the original grammar, a new start symi®is defined, together with the productiéh — S+#. The symbol

S is no longer a start symbol in the new grammar. This means that the parser will accept a sentence derived
from S only if it is immediately followed by the end of the token stream.

This approach has the advantage of simplicity. Howexgimlyacc and Menhir do not follow it, for several
reasons. Perhaps the most convincing one is that it is not flexible enough: sometimes, it is desirable to recognize
a sentence derived frot$), withoutrequiring that it be followed by the end of the token stream: this is the case,
for instance, when reading commands, one by one, on the standard input channel. In that case, there no end of
stream: the token stream is conceptually infinite. Furthermore, after a command has been recognizedt we do
wish to examine the next token, because doing so might cause the program to block, waiting for more input.

In short,ocamlyacc and Menhir's approach is to recognize a sentence derived ff@and tonot look if
possible, at what follows. However, this is possible only if the definitiors'a§ such that the end of afi-
sentence is identifiable without knowledge of the lookahead token. When the definittoda¥s not satisfy
this criterion, anagknd-of-stream conflicrises: after a potenti&l-sentence has been read, there can be a tension
between consulting the next token, in order to determine whether the sentence is continuned candulting
the next token, because the sentence might be over and whatever follows should not be read. Menhir warns
about end-of-stream conflicts, whereaamlyacc does not.

A definition of end-of-stream conflicts Technically, Menhir proceeds as follows.#4 symbol is introduced.

It is, however, only gpseudatoken: it is never produced by the lexical analyzer. For each start sy&ibhdhe
original grammar, a new start symb®lis defined, together with the productit — S. The corresponding

start state of the LR(1) automaton is composed of the LR(1) #ém- . S [#]. That is, the pseudo-token

initially appears in the lookahead set, indicating that we expect to be done after recognifirggatence.
During the construction of the LR(1) automaton, this lookahead set is inherited by other items, with the effect
that, in the end, the automaton has:

e shiftactions only on physical tokens; and
¢ reduceactions either on physical tokens or on the pseudo-tgken

A state of the automaton has a reduce actioroif, in that state, anS-sentence has been read, so that the
job is potentially finished. A state has a shift or reduce action on a physical token if, in that state, more tokens
potentially need to be read before rsentence is recognized. If a state has a reduce actigi,dhen that
action should be takenithoutrequesting the next token from the lexical analyzer. On the other hand, if a state
has a shift or reduce action on a physical token, then the lookaheadtuisdine consulted in order to determine
if that action should be taken.

An end-of-stream conflict arises when a state has distinct actiogg and on at least one physical token.
In short, this means that the end of 8rsentence cannot be unambiguously identified without examining one
extra token. Menhir’s default behavior, in that case, is to suppress the actignsmthat more input ialways
requested.

Example Figure 11 shows a grammar that has end-of-stream conflicts. When this grammar is processed,
Menhir warns about these conflicts, and further warnsekptis never accepted. Let us explain.

Part of the corresponding automaton, as described indheflicts file, is shown in Figurel2. Explana-
tions at the end of theconflicts file (not shown) point out that states 6 and 2 have an end-of-stream conflict.
Indeed, both states have distinct actionsggrand on the physical tokeRIMES It is interesting to note that,
even though state 4 has actions#rand on physical tokens, it does not have an end-of-stream conflict. This is
because the action taken in state 4 is always to reduce the prodegpor- expr TIMES exprregardless of
the lookahead token.

By default, Menhir produces a parser where end-of-stream conflicts are resolved in favor of looking ahead:
that is, the problematic reduce actions #nare suppressed. This means, in particular, thaatoeptaction
in state 2, which corresponds to reducing the productiqr — expr’, is suppressed. This explains why the
symbolexpris never accepted: because expressions do not have an unambiguous end marker, the parser will
always request one more token and will never stop.

In order to avoid this end-of-stream conflict, the standard solution is to introduce a new tok&NBagnd
to use it as an end marker for expressions. END token could be generated by the lexical analyzer when
it encounters the actual end of stream, or it could correspond to a piece of concrete syntax, say, a line feed
character, a semicolon, or aad keyword. The solution is shown in Figuia.

7. Positions

When arpbcamllex-generated lexical analyzer produces a token, it updates two fields, namegtart_p and
lex_curr_p, in its environment record, whose typeliexing.lexbuf. Each of these fields holds a value of
typeLexing.position. Together, they represent the token’s start and end positions within the text that is being
scanned. A position consists mainly of an offset (the positipas_cnum field), but also holds information
about the current file name, the current line number, and the current offset within the current line. (Not all
ocamllex-generated analyzers keep this extra information up to date. This must be explicitly programmed by
the author of the lexical analyzer.)

This mechanism allows associating pairs of positions with terminal symbols. If desired, Menhir automatically
extends it to nonterminal symbols as well. That is, it offers a mechanism for associating pairs of positions with
terminal or nonterminal symbols. This is done by making a set of keywords, documented inHgavailable
to semantic actions. Note that these keywordsnateavailable elsewhere—in particular, not within Objective
Caml headers. Note also that Objective Caml’s standard library meduteing is deprecated. The functions
that it offerscanbe called, but will return dummy positions.

8. Error handling and recovery

Error handling Menhir's error handling and recovery is inspired by thafyaéc andocamlyacc, but is not
identical. A speciaérror token is made available for use within productions. The LR automaton is constructed
exactly as iferror was a regular terminal symbol. Howeveryor is never produced by the lexical analyzer.

%token < int > INT
%token PLUS TIMES
%left PLUS

%left TIMES

Y%start < int > expr

%%
expr.
| i=INT{i}
| el=expr PLUS eZexpr{ el +e2}
| el=expr TIMES eZexpr{el*e2}
Figure 11. Basic example of an end-of-stream conflict
State 6:

expr -> expr . PLUS expr [# TIMES PLUS]

expr -> expr PLUS expr . [# TIMES PLUS]

expr -> expr . TIMES expr [# TIMES PLUS]

—-— On TIMES shift to state 3

-- On # PLUS reduce production expr -> expr PLUS expr

State 4:

expr -> expr . PLUS expr [# TIMES PLUS]

expr -> expr . TIMES expr [# TIMES PLUS]

expr -> expr TIMES expr . [# TIMES PLUS]

-- On # TIMES PLUS reduce production expr -> expr TIMES expr

State 2:

expr’ -> expr . [#]

expr -> expr . PLUS expr [# TIMES PLUS]
expr -> expr . TIMES expr [# TIMES PLUS]
-- On TIMES shift to state 3

-- On PLUS shift to state 5

-- On # accept expr

Figure 12. Part of an LR automaton for the grammar in Figlde

%token END
Y%start < int > main I/l instead of expr
%%
main
| e=exprEND{ e}
expr.

Figure 13. Fixing the grammar specification in Figuté

$startpos start position of the sentence derived out of the production
that is being reduced

$endpos end position of the sentence derived out of the production
that is being reduced

$startpos($i |id) start position of the sentence derived out of the symbol
whose semantic value is referred toga®r id

$endpos($i |id) end position of the sentence derived out of the symbol
whose semantic value is referred toa®r id

$startofs start offset of the sentence derived out of the production
that is being reduced

$endofs end offset of the sentence derived out of the production that

is being reduced

$startofs($i|id) start offset of the sentence derived out of the symbol whose
semantic value is referred to &isor id

$endofs ($i |id) end offset of the sentence derived out of the symbol whose
semantic value is referred to §isor id

Figure 14. Position-related keywords

Instead, when an error is detected, the current lookahead token is discarded and replacedewibin tbieen,
which becomes the current lookahead token. At this point, the parser entarbandlingmode.

In error handling mode, automaton states are popped off the automaton’s stack until a state alsaboan
error is found. This includebothshift andreduce actionsykacc andocamlyacc do not trigger reduce actions
onerror. It is somewhat unclear why this is so.)

When a state that can reduce exror is found, reduction is performed. Since the lookahead token is still
error, the automaton remains in error handling mode.

When a state that can shift efror is found, theerror token is shifted. At this point, the parser either enters
error recoverymode, if the--error-recovery switch was enabled at compile time, or returns to normal mode.

When no state that can act error is found on the automaton’s stack, the parser stops and raises the exception
Error. This exception carries no information. The position of the error can be obtained by reading the lexical
analyzer’s environment record.

Error recovery Error recovery mode is entered immediately afterearor token was successfully shifted,
and only if Menhir's--error-recovery switch was enabled when the parser was produced. In error recovery
mode, tokens are repeatedly taken off the input stream and discarded until an acceptable token is found. A token
is acceptable if the current state has an action on that token. When an acceptable token is found, the parser
returns to normal mode and the action takes place. Error recovery is also knosvayashronization

Error recovery mode is peculiar, in that it can cause non-termination if the token stream is infinite. In practice,
token streams ofteare infinite, due to arcamllex peculiarity: everycamllex-generated analyzer that maps
the eof pattern to arEOF token will produce an infinite stream &OF tokens, even if the underlying text
that is being scanned is finite. In order to address this issue, Menhir attributes special meaning to the token
namedEOF, if there is one in the grammar specification, wherrror-recovery is enabled. It checks that
every automaton state that can be reached when in error recovery mode accepts this token, and issues a warning
otherwise. This ensures that the parser always terminates.

Error-related keywords A couple of error-related keywords are made available to semantic actions.

When the$syntaxerror keyword is evaluated, evaluation of the semantic action is aborted, so that the
current reduction is abandoned; the current lookahead token is discarded and replacedesitiy token; and
error handling mode is entered. Note that there is no mechanism for insertimgarriokenin front of the

current lookahead token, even though this might also be desirable. It is unclear whether this keyword is useful;
it might be suppressed in the future.

The $previouserror keyword evaluates to an integer value, and indicates how many tokens were success-
fully shifted since the lagtrror token was shifted. This allows heuristics suchalsen a new error is detected,
do not display a new error message unless the previous error is ancient entmighimplemented if and where
desired.

When are errors detected?An error is detected when the current state of the automaton has no action on the
current lookahead token. Thus, understanding exactly when errors are detected requires understanding how the
automaton is constructed. Menhir's construction techniguet&nuth’s canonical LR(1) techniqué], which

is too expensive to be practical. Instead, Memhargesstates 11] and introduces so-calledefault reductions

Both techniques cadefererror detection by allowing extra reductions to take place before an error is detected.

All LALR(1) parser generators exhibit the same problem.

9. A comparison with ocamlyacc

Here is an incomplete list of the differences betweeamlyacc and Menhir. The list is roughly sorted by
decreasing order of importance.

¢ Menhir allows the definition of a nonterminal symbol to be parameterized by other (terminal or nonterminal)
symbols £5.2). Furthermore, it offers a library of standard parameterized definitighg))(including
options, sequences, and lists. It offers some support for EBNF syntax, la+theand* modifiers.

e ocamlyacc only accepts LALR(1) grammars. Menhir accepts LR(1) grammars, thus avoiding certain
artificial conflicts.

e Menhir's %inline keyword ¢5.3) helps avoid or resolve some LR(1) conflicts without artificial modification
of the grammar.

e Menhir explains conflicts§g) in terms of the grammar, not just in terms of the automaton. Menhir's
explanations are believed to be understandable by mere humans.

¢ Menhir allows grammar specifications to be split over multiple filgs1). It also allows several grammars
to share a single set of tokens.

e Menhir produces reentrant parsers.

¢ Menhir is able to produce parsers that are parameterized by Objective Caml modules.

® ocamlyacc requires semantic values to be referred to via keywogds:$2, and so on. Menhir allows
semantic values to be explicitly named.

e Menhir warns about end-of-stream conflict$.4), whereasocamlyacc does not. Menhir warns about
productions that are never reduced, whereas, at least in some®aseis;acc does not.

e Menhir offers an option to typecheck semantic actibeforea parser is generated: seeinfer.

e ocamlyacc produces tables that are interpreted by a piece of C code, requiring semantic actions to be
encapsulated as Objective Caml closures and invoked by C code. Menhir produces no tables and requires
no C stubs: the generated parser is pure Objective Caml code.

e Menhir makes Objective Caml’s standard library modRdesing entirely obsolete. Access to locations is
now via keywords {7). Uses ofraise Parse_error within semantic actions are deprecated. The function
parse_error is deprecated. They are replaced with keywof@3. (

e Menhir's error handling and error recovery mechanisi® @re inspired byocamlyacc’s, but are not
guaranteed to be fully compatible. Error recovery, also known as re-synchronization, is now optional.

e The way in which severe conflict§g) are resolved is not guaranteed to be fully compatible witimlyacc.

e Menhir warns about unuse¥btoken, %nonassoc, %left, and %right declarations. It also warns about
%prec annotations that do not help resolve a conflict.

¢ Menhir accepts Objective Caml-style comments.

e Menhir allows%start and%type declarations to be condensed.

¢ Menhir allows two (or more) productions to share a single semantic action.

e Menhir produces better error messages when a semantic action contains ill-balanced parentheses.

e ocamlyacc ignores semicolons and commas everywhere. Menhir also ignores semicolons everywhere, but
treats commas as significant. Commas are optional withioken declarations.

10. Questions and Answers

o Turning on --infer broke my Makefile! What should | do? Look atdemos/Makefile.shared. It is
meant to be re-used without change. If it does not suit your needs, you can copy parts of it into your own
Makefile, or submit suggestions for improvement.

11. Technical background

After experimenting with Knuth’s canonical LR(1) techniq®, jwe found that itreally is not practical, even
on today’s computers. For this reason, Menhir implements Pager’s algotitfjnwhich merges states on the
fly if it can be proved that no reduce/reduce conflicts will arise as a consequence of this decision. This is how
Menhir avoids the so-calleatysteriousonflicts created by LALR(1) parser generatdisdection 5.7].
Menhir’s algorithm for explaining conflicts is inspired by DeRemer and PenneHp'arid adapted for use
with Pager’s construction technique.
Menhir produces code, as opposed to tables. This approach has been explore@péfdviehhir performs
some static analysis of the automaton in order to produce more compact code.
The type-theoretic tricks that triggered our interest in LR pardéfssre not implemented in Menhir, because
the Objective Caml compiler does not yet offer the required features. This will hopefully be addressed in the
future.

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. UllmarCompilers: Principles, Techniques, and Tooksddison-Wesley,
1986.
[2] Andrew Appel.Modern Compiler Implementation in MICambridge University Press, 1998.
[3] Achyutram Bhamidipaty and Todd A. Proebstinvgry fast YACC-compatible parsers (for very little effor§oftware
— Practice & Experience28(2):181-190, February 1998.
[4] Frank DeRemer and Thomas Pennelidficient computation of.ALR(1) look-ahead setsACM Transactions on
Programming Languages and Syster(g):615-649, 1982.
[5] Charles Donnelly and Richard StallmaBison September 2005.
[6] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullmaimtroduction to Automata Theory, Languages, and
Computation Addison-Wesley, 2000.
[7] R. Nigel Horspool and Michael Whitnefzven faster LR parsingsoftware — Practice & Experiengc20(6):515-535,
June 1990.
[8] Steven C. JohnsortYacc: Yet another compiler compildn UNIX Programmer’s Manualolume 2, pages 353-387.
Holt, Rinehart, and Winston, 1979.
[9] Donald E. Knuth. On the translation of languages from left to rigiformation & Control 8(6):607—-639, December
1965.
[10] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didiénty, and 8dme Vouillon. The Objective Caml system
December 2005.
[11] David Pager. A practical general method for construcfidg k) parsers Acta Informatica 7:249-268, 1977.
[12] Francois Pottier and Yannégis-GianasTowards efficient, typed LR parserst ACM Workshop on MLElectronic
Notes in Theoretical Computer Science, pages 149-173, September 2005.
[13] David R. Tarditi and Andrew W. AppeML-Yacc User’'s ManualApril 2000.

http://www.cs.princeton.edu/~appel/modern/ml/
http://www.cs.arizona.edu/people/todd/papers/TR95-09.ps
http://doi.acm.org/10.1145/69622.357187
http://www.gnu.org/software/bison/manual/
http://www-db.stanford.edu/~ullman/ialc.html
http://www-db.stanford.edu/~ullman/ialc.html
http://www.cs.uvic.ca/~nigelh/Publications/fastparse.pdf
http://dinosaur.compilertools.net/
http://caml.inria.fr/
http://cristal.inria.fr/~fpottier/publis/fpottier-regis-gianas-typed-lr.pdf
http://www.smlnj.org/doc/ML-Yacc/

	Foreword
	Usage
	Lexical conventions
	Syntax of grammar specifications
	Declarations
	Headers
	Parameters
	Tokens
	Priority and associativity
	Types
	Start symbols

	Rules
	Production groups
	Productions
	Producers
	Actuals

	Advanced features
	Splitting specifications over multiple files
	Parameterizing rules
	Inlining
	The standard library

	Conflicts
	When is a conflict benign?
	How are severe conflicts explained?
	How are severe conflicts resolved in the end?
	End-of-stream conflicts

	Positions
	Error handling and recovery
	A comparison with ocamlyacc
	Questions and Answers
	Technical background

