
The OMake build system

Jason Hickey

November 5, 2005
Version 0.9.6.6

Abstract

omake is a build system designed to scale from small projects to very
large projects spanning many directories. omake uses a syntax similar
to make(1), with many additional features, including accurate automated
dependency analysis based on MD5 digests.

1 Description

omake is designed for building projects that might have source files in several
directories. Projects are normally specified using an OMakefile in each of the
project directories, and an OMakeroot file in the root directory of the project.
The OMakeroot file specifies general build rules, and the OMakefiles specify the
build parameters specific to each of the subdirectories. When omake runs, it
walks the configuration tree, evaluating rules from all of the OMakefiles. The
project is then built from the entire collection of build rules.

1.1 Automatic dependency analysis

Dependency analysis has always been problematic with the make(1) program.
omake addresses this by adding the .SCANNER target, which specifies a command
to produce dependencies. For example, the following rule

.SCANNER: %.o: %.c
$(CC) $(INCLUDE) -MM $<

is the standard way to generate dependencies for .c files. omake will auto-
matically run the scanner when it needs to determine dependencies for a file.

1.2 Content-based dependency analysis

Dependency analysis in omake uses MD5 digests to determine whether files
have changed. After each run, omake stores the dependency information in a
file called .omakedb in the project root directory. When a rule is considered
for execution, the command is not executed if the target, dependencies, and

omake (1) 1 Version: 0.9.6.6, November 5, 2005

2 OMAKE QUICKSTART GUIDE

command sequence are unchanged since the last run of omake. As an optimiza-
tion, omake does not recompute the digest for a file that has an unchanged
modification time, size, and inode number.

See the following manual pages for more information.

omake-quickstart A quickstart guide to using omake.

omake-options Command-line options for omake.

omake-root The system OMakeroot contains the default specification of how
to build C, OCaml, and LATEX programs.

omake-language The omake language, including a description of objects, ex-
pressions, and values.

omake-shell Using the omake shell for command-line interpretation.

omake-rules Using omake rules to build program.

omake-base Functions and variables in the core standard library.

omake-system Functions on files, input/output, and system commands.

omake-pervasives Pervasives defines the built-in objects.

osh The osh command-line interpreter.

omake-doc All the OMake documentation in a single page.

2 OMake quickstart guide

2.1 For users already familiar with make

For users already familiar with the make(1) command, here is a list of differences
to keep in mind when using omake.

• In omake, you are much less likely to define build rules of your own.
The system provides many standard function (like StaticCLibrary and
CProgram) to specify these builds more simply.

• Implicit rules using .SUFFIXES and the .suf1.suf2: are not supported.
You should use wildcard patterns instead %.suf2: %.suf1.

• Scoping is significant: you should define variables and .PHONY targets
before they are used.

• Subdirectories are incorporated into a project using the .SUBDIRS: target.

omake (1) 2 Version: 0.9.6.6, November 5, 2005

2.2 Building a small C program 2 OMAKE QUICKSTART GUIDE

2.2 Building a small C program

To start a new project, the easiest method is to change directories to the project
root and use the command omake --install to install default OMakefiles.

$ cd ~/newproject
$ omake --install
*** omake: creating OMakeroot
*** omake: creating OMakefile
*** omake: project files OMakefile and OMakeroot have been installed
*** omake: you should edit these files before continuing

The default OMakefile contains sections for building C and OCaml pro-
grams. For now, we’ll build a simple C project.

Suppose we have a C file called hello_code.c containing the following code:

#include <stdio.h>

int main(int argc, char **argv)
{

printf("Hello world\n");
return 0;

}

To build the program a program hello from this file, we can use the CProgram
function. The OMakefile contains just one line that specifies that the program
hello is to be built from the source code in the hello_code.c file (note that
file suffixes are not passed to these functions).

CProgram(hello, hello_code)

Now we can run omake to build the project. Note that the first time we run
omake, it both scans the hello_code.c file for dependencies, and compiles it
using the cc compiler. The status line printed at the end indicates how many
files were scanned, how many were built, and how many MD5 digests were
computed.

$ omake hello
*** omake: reading OMakefiles
*** omake: finished reading OMakefiles (0.0 sec)
- scan . hello_code.o
+ cc -I. -MM hello_code.c
- build . hello_code.o
+ cc -I. -c -o hello_code.o hello_code.c
- build . hello
+ cc -o hello hello_code.o
*** omake: done (0.5 sec, 1/6 scans, 2/6 rules, 5/22 digests)
$ omake

omake (1) 3 Version: 0.9.6.6, November 5, 2005

2.3 Larger projects 2 OMAKE QUICKSTART GUIDE

*** omake: reading OMakefiles
*** omake: finished reading OMakefiles (0.1 sec)
*** omake: done (0.1 sec, 0/4 scans, 0/4 rules, 0/9 digests)

If we want to change the compile options, we can redefine the CC and CFLAGS
variables before the CProgram line. In this example, we will use the gcc compiler
with the -g option. In addition, we will specify a .DEFAULT target to be built by
default. The EXE variable is defined to be .exe on Win32 systems; it is empty
otherwise.

CC = gcc
CFLAGS += -g
CProgram(hello, hello_code)
.DEFAULT: hello$(EXE)

Here is the corresponding run for omake.

$ omake
*** omake: reading OMakefiles
*** omake: finished reading OMakefiles (0.0 sec)
- scan . hello_code.o
+ gcc -g -I. -MM hello_code.c
- build . hello_code.o
+ gcc -g -I. -c -o hello_code.o hello_code.c
- build . hello
+ gcc -g -o hello hello_code.o
*** omake: done (0.4 sec, 1/7 scans, 2/7 rules, 3/22 digests)

We can, of course, include multiple files in the program. Suppose we write
a new file hello_helper.c. We would include this in the project as follows.

CC = gcc
CFLAGS += -g
CProgram(hello, hello_code hello_helper)
.DEFAULT: hello$(EXE)

2.3 Larger projects

As the project grows it is likely that we will want to build libraries of code.
Libraries can be built using the StaticCLibrary function. Here is an example
of an OMakefile with two libraries.

CC = gcc
CFLAGS += -g

FOO_FILES = foo_a foo_b
BAR_FILES = bar_a bar_b bar_c

omake (1) 4 Version: 0.9.6.6, November 5, 2005

2.4 Subdirectories 2 OMAKE QUICKSTART GUIDE

StaticCLibrary(libfoo, $(FOO_FILES))
StaticCLibrary(libbar, $(BAR_FILES))

The hello program is linked with both libraries
LIBS = libfoo libbar
CProgram(hello, hello_code hello_helper)

.DEFAULT: hello$(EXE)

2.4 Subdirectories

As the project grows even further, it is a good idea to split it into several
directories. Suppose we place the libfoo and libbar into subdirectories.

In each subdirectory, we define an OMakefile for that directory. For exam-
ple, here is an example OMakefile for the foo subdirectory.

INCLUDES +=/bar

FOO_FILES = foo_a foo_b
StaticCLibrary(libfoo, $(FOO_FILES))

Note the the INCLUDES variable is defined to include the other directories in
the project.

Now, the next step is to link the subdirectories into the main project. The
project OMakefile should be modified to include a .SUBDIRS: target.

Project configuration
CC = gcc
CFLAGS += -g

Subdirectories
.SUBDIRS: foo bar

The libraries are now in subdirectories
LIBS = foo/libfoo bar/libbar

CProgram(hello, hello_code hello_helper)

.DEFAULT: hello$(EXE)

Note that the variables CC and CFLAGS are defined before the .SUBDIRS
target. These variables remain defined in the subdirectories, so that libfoo
and libbar use gcc -g.

If the two directories are to be configured differently, we have two choices.
The OMakefile in each subdirectory can be modified with its configuration (this
is how it would normally be done). Alternatively, we can also place the change
in the root OMakefile.

omake (1) 5 Version: 0.9.6.6, November 5, 2005

2.4 Subdirectories 2 OMAKE QUICKSTART GUIDE

Default project configuration
CC = gcc
CFLAGS += -g

libfoo uses the default configuration
.SUBDIRS: foo

libbar uses the optimizing compiler
CFLAGS += -O3
.SUBDIRS: bar

Main program
LIBS = foo/libfoo bar/libbar
CProgram(hello, hello_code hello_helper)

.DEFAULT: hello$(EXE)

Note that the way we have specified it, the CFLAGS variable also contains
the -O3 option for the CProgram, and hello_code.c and hello_helper.c file
will both be compiled with the -O3 option. If we want to make the change truly
local to libbar, we can put the bar subdirectory in its own scope using the
section form.

Default project configuration
CC = gcc
CFLAGS += -g

libfoo uses the default configuration
.SUBDIRS: foo

libbar uses the optimizing compiler
section

CFLAGS += -O3
.SUBDIRS: bar

Main program does not use the optimizing compiler
LIBS = foo/libfoo bar/libbar
CProgram(hello, hello_code hello_helper)

.DEFAULT: hello$(EXE)

Later, suppose we decide to port this project to Win32, and we discover that
we need different compiler flags and an additional library.

Default project configuration
if $(equal $(OSTYPE), Win32)

CC = cl /nologo

omake (1) 6 Version: 0.9.6.6, November 5, 2005

2.4 Subdirectories 2 OMAKE QUICKSTART GUIDE

CFLAGS += /DWIN32 /MT
export

else
CC = gcc
CFLAGS += -g
export

libfoo uses the default configuration
.SUBDIRS: foo

libbar uses the optimizing compiler
section

CFLAGS += $(if $(equal $(OSTYPE), Win32), $(EMPTY), -O3)
.SUBDIRS: bar

Default libraries
LIBS = foo/libfoo bar/libbar

We need libwin32 only on Win32
if $(equal $(OSTYPE), Win32)

LIBS += win32/libwin32

.SUBDIRS: win32
export

Main program does not use the optimizing compiler
CProgram(hello, hello_code hello_helper)

.DEFAULT: hello$(EXE)

Note the use of the export directives to export the variable definitions from
the if-statements. Variables in omake are scoped—variables in nested blocks
(blocks with greater indentation), are not normally defined in outer blocks.
The export directive specifies that the variable definitions in the nested blocks
should be exported to their parent block.

Finally, for this example, we decide to copy all libraries into a common lib
directory. We first define a directory variable, and replace occurrences of the
lib string with the variable.

The common lib directory
LIB = $(dir lib)

phony target to build just the libraries
.PHONY: makelibs

Default project configuration

omake (1) 7 Version: 0.9.6.6, November 5, 2005

2.4 Subdirectories 2 OMAKE QUICKSTART GUIDE

if $(equal $(OSTYPE), Win32)
CC = cl /nologo
CFLAGS += /DWIN32 /MT
export

else
CC = gcc
CFLAGS += -g
export

libfoo uses the default configuration
.SUBDIRS: foo

libbar uses the optimizing compiler
section

CFLAGS += $(if $(equal $(OSTYPE), Win32), $(EMPTY), -O3)
.SUBDIRS: bar

Default libraries
LIBS = $(LIB)/libfoo $(LIB)/libbar

We need libwin32 only on Win32
if $(equal $(OSTYPE), Win32)

LIBS += $(LIB)/libwin32

.SUBDIRS: win32
export

Main program does not use the optimizing compiler
CProgram(hello, hello_code hello_helper)

.DEFAULT: hello$(EXE)

In each subdirectory, we modify the OMakefiles in the library directo-
ries to install them into the $(LIB) directory. Here is the relevant change
to foo/OMakefile.

INCLUDES +=/bar

FOO_FILES = foo_a foo_b
StaticCLibraryInstall(makelib, $(LIB), libfoo, $(FOO_FILES))

Directory (and file names) evaluate to relative pathnames. Within the foo
directory, the $(LIB) variable evaluates to ../lib.

As another example, instead of defining the INCLUDES variable separately in
each subdirectory, we can define it in the toplevel as follows.

INCLUDES = $(ROOT) $(dir foo bar win32)

omake (1) 8 Version: 0.9.6.6, November 5, 2005

2.5 Other things to consider 2 OMAKE QUICKSTART GUIDE

In the foo directory, the INCLUDES variable will evaluate to the string/bar ../win32.
In the bar directory, it would be/foo . ../win32. In the root directory
it would be . foo bar win32.

2.5 Other things to consider

omake also handles recursive subdirectories. For example, suppose the foo
directory itself contains several subdirectories. The foo/OMakefile would then
contain its own .SUBDIRS target, and each of its subdirectories would contain
its own OMakefile.

2.6 Building OCaml programs

By default, omake is also configured with functions for building OCaml pro-
grams. The functions for OCaml program use the OCaml prefix. For example,
suppose we reconstruct the previous example in OCaml, and we have a file called
hello_code.ml that contains the following code.

open Printf

let () = printf "Hello world\n"

An example OMakefile for this simple project would contain the following.

Use the byte-code compiler
BYTE_ENABLED = true
NATIVE_ENABLED = false
OCAMLCFLAGS += -g

Build the program
OCamlProgram(hello, hello_code)
.DEFAULT: hello.run

Next, suppose the we have two library subdirectories: the foo subdirectory
is written in C, the bar directory is written in OCaml, and we need to use the
standard OCaml Unix module.

Default project configuration
if $(equal $(OSTYPE), Win32)

CC = cl /nologo
CFLAGS += /DWIN32 /MT
export

else
CC = gcc
CFLAGS += -g
export

omake (1) 9 Version: 0.9.6.6, November 5, 2005

3 NOTES

Use the byte-code compiler
BYTE_ENABLED = true
NATIVE_ENABLED = false
OCAMLCFLAGS += -g

library subdirectories
INCLUDES += $(dir foo bar)
OCAMLINCLUDES += $(dir foo bar)
.SUBDIRS: foo bar

C libraries
LIBS = foo/libfoo

OCaml libraries
OCAML_LIBS = bar/libbar

Also use the Unix module
OCAML_OTHER_LIBS = unix

The main program
OCamlProgram(hello, hello_code hello_helper)

.DEFAULT: hello

The foo/OMakefile would be configured as a C library.

FOO_FILES = foo_a foo_b
StaticCLibrary(libfoo, $(FOO_FILES))

The bar/OMakefile would build an ML library.

BAR_FILES = bar_a bar_b bar_c
OCamlLibrary(libbar, $(BAR_FILES))

3 Notes

3.1 The OMakefile and OMakeroot files

OMake uses the OMakefile and OMakeroot files for configuring a project. The
syntax of these files is the same, but their role is slightly different. For one
thing, every project must have exactly one OMakeroot file in the project root
directory. This file serves to identify the project root, and it contains code that
sets up the project. In contrast, a multi-directory project will often have an
OMakefile in each of the project subdirectories, specifying how to build the
files in that subdirectory.

Normally, the OMakeroot file is boilerplate. The following listing is a typical
example.

omake (1) 10 Version: 0.9.6.6, November 5, 2005

4 MULTIPLE VERSION SUPPORT

include $(STDLIB)/build/Common
include $(STDLIB)/build/C
include $(STDLIB)/build/OCaml
include $(STDLIB)/build/LaTeX

Redefine the command-line variables
DefineCommandVars(.)

The current directory is part of the project
.SUBDIRS: .

The include lines include the standard configuration files needed for the
project. The $(STDLIB) represents the omake library directory. The only re-
quired configuration file is Common. The others are optional; for example, the
$(STDLIB)/build/OCaml file is needed only when the project contains programs
written in OCaml.

The DefineCommandVars function defines any variables specified on the com-
mand line (as arguments of the form VAR=<value>). The .SUBDIRS line specifies
that the current directory is part of the project (so the OMakefile should be
read).

Normally, the OMakeroot file should be small and project-independent. Any
project-specific configuration should be placed in the OMakefiles of the project.

4 Multiple version support

OMake version 0.9.6 introduced preliminary support for multiple, simultaneous
versions of a project. Versioning uses the vmount(dir1, dir2) function, which
defines a “virtual mount” of directory dir1 over directory dir2. A “virtual
mount” is like a transparent mount in Unix, where the files from dir1 appear
in the dir2 namespace, but new files are created in dir2. More precisely, the
filename dir2/foo refers to: a) the file dir1/foo if it exists, or b) dir2/foo
otherwise.

The vmount function makes it easy to specify multiple versions of a project.
Suppose we have a project where the source files are in the directory src/, and
we want to compile two versions, one with debugging support and one optimized.
We create two directories, debug and opt, and mount the src directory over
them.

section
CFLAGS += -g
vmount(-l, src, debug)
.SUBDIRS: debug

section
CFLAGS += -O3
vmount(-l, src, opt)

omake (1) 11 Version: 0.9.6.6, November 5, 2005

4.1 Notes 6 COMMAND-LINE OPTIONS

.SUBDIRS: opt

Here, we are using section blocks to define the scope of the vmount—you
may not need them in your project.

The -l option is optional. It specifies that files form the src directory should
be linked into the target directories (or copied, if the system is Win32). The
links are added as files are referenced. If no options are given, then files are not
copied or linked, but filenames are translated to refer directly to the src/ files.

Now, when a file is referenced in the debug directory, it is linked from the
src directory if it exists. For example, when the file debug/OMakefile is read,
the src/OMakefile is linked into the debug/ directory.

The vmount model is fairly transparent. The OMakefiles can be written as
if referring to files in the src/ directory—they need not be aware of mounting.
However, there are a few points to keep in mind.

4.1 Notes

• When using the vmount function for versioning, it wise to keep the source
files distinct from the compiled versions. For example, suppose the source
directory contained a file src/foo.o. When mounted, the foo.o file will
be the same in all versions, which is probably not what you want. It is
better to keep the src/ directory pristine, containing no compiled code.

• When using the vmount -l option, files are linked into the version direc-
tory only if they are referenced in the project. Functions that examine
the filesystem (like $(ls ...)) may produce unexpected results.

5 Synopsis

omake [-k] [-jcount] [-n] [-s] [-S] [-p] [-P] [-w] [-t] [-u] [-U] [-R] [–project] [–
progress] [–no-progress] [–print-status] [–no-print-status] [–print-exit]
[–no-print-exit] [–print-dependencies] [–show-dependencies target] [–force-
dotomake] [–dotomake dir] [–flush-includes] [–configure] [–install] [–install-
all] [–install-force] [–version] [filename...] [var-definition...]

6 Command-line options

-k Do not abort when a build command fails; continue to build as much of the
project as possible.

-n Print the commands that would be executed, but do no execute them. This
can be used to see what would happen if the project were to be built.

-s Do not print commands as they are executed (be “silent”).

-S Do not print commands as they are executed unless they produce output.

omake (1) 12 Version: 0.9.6.6, November 5, 2005

6 COMMAND-LINE OPTIONS

–progress Print a progress indicator. This is normally used with the -s or -S
options.

–no-progress Do not print a progress indicator (default).

–print-exit Print termination codes when commands complete.

–no-print-exit Do not print termination codes when commands complete (de-
fault).

-w Print directory information in make format as commands are executed. This
is mainly useful for editors that expect make-style directory information
for determining the location of errors.

-p Watch the filesystem for changes, and continue the build until it succeeds.
If this option is specified, omake will restart the build whenever source
files are modified.

-P Watch the filesystem for changes forever. If this option is specified, omake
will restart the build whenever source files are modified.

-R Ignore the current directory and build the project from its root directory.
When omake is run in a subdirectory of a project, it normally builds files
within the current directory and its subdirectories. If the -R option is
specified, the build is performed as if omake were run in the project root.

-t Update the omake database to force the project to be considered up-to-date.

-U Do not trust cached build information. This will force the entire project to
be rebuilt.

–depend Do not trust cached dependency information. This will force files to
be rescanned for dependency information.

–configure Re-run static.\ sections of the included omake files, instead of
trusting the cached results.

[–force-dotomake] Always use the $HOME/.omake for the .omc cache files.

[–dotomake dir] Use the specified directory instead of the $HOME/.omake for
the placement of the .omc cache files.

-jcount Run multiple build commands in parallel. The count specifies a bound
on the number of commands to run simultaneously. In addition, the
count may specify servers for remote execution of commands in the form
server=count. For example, the option -j 2:small.host.org=1:large.host.org=4
would specify that up to 2 jobs can be executed locally, 1 on the server
small.host.org and 4 on large.host.org. Each remote server must use
the same filesystem location for the project.

Remote execution is currently an experimental feature. Remote filesys-
tems like NFS do not provide adequate file consistency for this to work.

–print-dependencies Print dependency information for the targets on the
command line.

–show-dependencies target Print dependency information if the target is
built.

omake (1) 13 Version: 0.9.6.6, November 5, 2005

7 OMAKE CONCEPTS AND SYNTAX

–install Install default files OMakefile and OMakeroot into the current direc-
tory. You would typically do this to start a project in the current directory.

–install-all In addition to installing files OMakefile and OMakeroot, install
default OMakefiles into each subdirectory of the current directory. cvs(1)
rules are used for filtering the subdirectory list. For example, OMakefiles
are not copied into directories called CVS, RCCS, etc.

–install-force Normally, omake will prompt before it overwrites any existing
OMakefile. If this option is given, all files are forcibly overwritten without
prompting.

var-definition omake variables can also be defined on the command line in
the form name=value. For example, the CFLAGS variable might be defined
on the command line with the argument CFLAGS="-Wall -g".

In addition, omake supports a number of debugging flags on the command
line. Run omake --help to get a summary of these flags.

7 OMake concepts and syntax

Projects are specified to omake with OMakefiles. The OMakefile has a format
similar to a Makefile. An OMakefile has three main kinds of syntactic objects:
variable definitions, function definitions, and rule definitions.

7.1 Variables

Variables are defined with the following syntax. The name is any sequence of
alphanumeric characters, underscore _, and hyphen -.

<name> = <value>

Values are defined as a sequence of literal characters and variable expansions.
A variable expansion has the form $(<name>), which represents the value of the
<name> variable in the current environment. Some examples are shown below.

CC = gcc
CFLAGS = -Wall -g
COMMAND = $(CC) $(CFLAGS) -O2

In this example, the value of the COMMAND variable is the string gcc -Wall -g -O2.
Unlike make(1), variable expansion is eager and functional (see also the

section on Scoping). That is, variable values are expanded immediately and
new variable definitions do not affect old ones. For example, suppose we extend
the previous example with following variable definitions.

X = $(COMMAND)
COMMAND = $(COMMAND) -O3
Y = $(COMMAND)

In this example, the value of the X variable is the string gcc -Wall -g -O2
as before, and the value of the Y variable is gcc -Wall -g -O2 -O3.

omake (1) 14 Version: 0.9.6.6, November 5, 2005

7.2 Adding to a variable definition 7 OMAKE CONCEPTS AND SYNTAX

7.2 Adding to a variable definition

Variables definitions may also use the += operator, which adds the new text to
an existing definition. The following two definitions are equivalent.

Add options to the CFLAGS variable
CFLAGS = $(CFLAGS) -Wall -g

The following definition is equivalent
CFLAGS += -Wall -g

7.3 Arrays

Arrays can be defined by appending the [] sequence to the variable name and
defining initial values for the elements as separate lines. Whitespace is significant
on each line. The following code sequence prints c d e.

X[] =
a b
c d e
f

println($(nth 2, $(X)))

7.4 Special characters and quoting

The following characters are special to omake: $():,=#\. To treat any of these
characters as normal text, they should be escaped with the backslash character
\.

DOLLAR = \$

Newlines may also be escaped with a backslash to concatenate several lines.

FILES = a.c\
b.c\
c.c

Note that the backslash is not an escape for any other character, so the
following works as expected (that is, it preserves the backslashes in the string).

DOSTARGET = C:\WINDOWS\control.ini

An alternative mechanism for quoting special text is the use $"..." escapes.
The number of double-quotations is arbitrary. The outermost quotations are
not included in the text.

A = $""String containing "quoted text" ""
B = $"""Multi-line

text.
The # character is not special"""

omake (1) 15 Version: 0.9.6.6, November 5, 2005

7.5 Function definitions 7 OMAKE CONCEPTS AND SYNTAX

7.5 Function definitions

Functions are defined using the following syntax.

<name>(<params>) =
<indented-body>

The parameters are a comma-separated list of identifiers, and the body must
be placed on a separate set of lines that are indented from the function definition
itself. For example, the following text defines a function that concatenates its
arguments, separating them with a colon.

ColonFun(a, b) =
return($(a):$(b))

The return expression can be used to return a value from the function. A
return statement is not required; if it is omitted, the returned value is the value
of the last expression in the body to be evaluated. NOTE: as of version 0.9.6,
return is a control operation, causing the function to immediately return. In
the following example, when the argument a is true, the function f immediately
returns the value 1 without evaluating the print statement.

f(a) =
if $(a)

return 1
println(The argument is false)
return 0

Functions are called using the GNU-make syntax, $(<name> <args)), where
<args> is a comma-separated list of values. For example, in the following pro-
gram, the variable X contains the value foo:bar.

X = $(ColonFun foo, bar)

If the value of a function is not needed, the function may also be called using
standard function call notation. For example, the following program prints the
string “She says: Hello world”.

Printer(name) =
println($(name) says: Hello world)

Printer(She)

7.6 Comments

Comments begin with the # character and continue to the end of the line.

omake (1) 16 Version: 0.9.6.6, November 5, 2005

7.7 File inclusion 7 OMAKE CONCEPTS AND SYNTAX

7.7 File inclusion

Files may be included with the include form. The included file must use the
same syntax as an OMakefile.

include files.omake

7.8 Scoping, sections

Scopes in omake are defined by indentation level. When indentation is increased,
such as in the body of a function, a new scope is introduced.

The section form can also be used to define a new scope. For example, the
following code prints the line X = 2, followed by the line X = 1.

X = 1
section

X = 2
println(X = $(X))

println(X = $(X))

This result may seem surprising–the variable definition within the section
is not visible outside the scope of the section.

The export form can be used to circumvent this restriction by exporting
variable values from an inner scope. It must be the final expression in a scope.
For example, if we modify the previous example by adding an export expression,
the new value for the X variable is retained, and the code prints the line X = 2
twice.

X = 1
section

X = 2
println(X = $(X))
export

println(X = $(X))

There are also cases where separate scoping is quite important. For example,
each OMakefile is evaluated in its own scope. Since each part of a project
may have its own configuration, it is important that variable definitions in one
OMakefile do not affect the definitions in another.

To give another example, in some cases it is convenient to specify a separate
set of variables for different build targets. A frequent idiom in this case is to
use the section command to define a separate scope.

section
CFLAGS += -g
%.c: %.y

omake (1) 17 Version: 0.9.6.6, November 5, 2005

7.9 Conditionals 7 OMAKE CONCEPTS AND SYNTAX

$(YACC) $<
.SUBDIRS: foo

.SUBDIRS: bar baz

In this example, the -g option is added to the CFLAGS variable by the foo
subdirectory, but not by the bar and baz directories. The implicit rules are
scoped as well and in this example, the newly added yacc rule will be inherited
by the foo subdirectory, but not by the bar and baz ones; furthermore this
implicit rule will not be in scope in the current directory.

7.9 Conditionals

Top level conditionals have the following form.

if <test>
<true-clause>

elseif <text>
<elseif-clause>

else
<else-clause>

The <test> expression is evaluated, and if it evaluates to a true value (see
the Logic section), the code for the <true-clause> is evaluated; otherwise the
remaining clauses are evaluated. There may be multiple elseif clauses; both
the elseif and else clauses are optional. Note that the clauses are indented,
so they introduce new scopes.

The following example illustrates a typical use of a conditional. The OSTYPE
variable is the current machine architecture.

Common suffixes for files
if $(equal $(OSTYPE), Win32)

EXT_LIB = .lib
EXT_OBJ = .obj
EXT_ASM = .asm
EXE = .exe
export

elseif $(equal $(OSTYPE), Unix)
EXT_LIB = .a
EXT_OBJ = .o
EXT_ASM = .s
EXE =
export

else
Abort on other architectures
eprintln($(OSTYPE) is not recognized)
exit(1)

omake (1) 18 Version: 0.9.6.6, November 5, 2005

7.10 Matching 7 OMAKE CONCEPTS AND SYNTAX

7.10 Matching

Pattern matching is performed with the switch and match forms.

switch <string>
case <pattern1>

<clause1>
case <pattern2>

<clause2>
...
default

<default-clause>

The number of cases is arbitrary. The default clause is optional; however,
if it is used it should be the last clause in the pattern match.

For switch, the string is compared with the patterns literally.

switch $(HOST)
case mymachine

println(Building on mymachine)
default

println(Building on some other machine)

Patterns need not be constant strings. The following function tests for a
literal match against pattern1, and a match against pattern2 with ## delim-
iters.

Switch2(s, pattern1, pattern2) =
switch $(s)
case $(pattern1)

println(Pattern1)
case $"##$(pattern2)##"

println(Pattern2)
default

println(Neither pattern matched)

For match the patterns are egrep(1)-style regular expressions. The numeric
variables $1, $2, ... can be used to retrieve values that are matched by
\(...\) expressions.

match $(NODENAME)@$(SYSNAME)@$(RELEASE)
case $"mymachine.*@\(.*\)@\(.*\)"

println(Compiling on mymachine; sysname $1 and release $2 are ignored)

case $".*@Linux@.*2\.4\.\(.*\)"
println(Compiling on a Linux 2.4 system; subrelease is $1)

default
eprintln(Machine configuration not implemented)
exit(1)

omake (1) 19 Version: 0.9.6.6, November 5, 2005

8 OBJECTS

8 Objects

OMake is an object-oriented language. Generally speaking, an object is a value
that contains fields and methods. An object is defined with a . suffix for a
variable. For example, the following object might be used to specify a point
(1, 5) on the two-dimensional plane.

Coord. =
x = 1
y = 5
print(message) =

println($"$(message): the point is ($(x), $(y)")

Define X to be 5
X = $(Coord.x)

This prints the string, "Hi: the point is (1, 5)"
Coord.print(Hi)

The fields x and y represent the coordinates of the point. The method print
prints out the position of the point.

8.1 Classes

We can also define classes. For example, suppose we wish to define a generic
Point class with some methods to create, move, and print a point. A class is
really just an object with a name, defined with the class directive.

Point. =
class Point

Default values for the fields
x = 0
y = 0

Create a new point from the coordinates
new(x, y) =

this.x = $(x)
this.y = $(y)
return $(this)

Move the point to the right
move-right() =

x = $(add $(x), 1)
return $(this)

Print the point

omake (1) 20 Version: 0.9.6.6, November 5, 2005

8.2 Inheritance 9 SPECIAL OBJECTS/SECTIONS

print() =
println($"The point is ($(x), $(y)")

p1 = $(Point.new 1, 5)
p2 = $(p1.move-right)

Prints "The point is (1, 5)"
p1.print()

Prints "The point is (2, 5)"
p2.print()

Note that the variable $(this) is used to refer to the current object. Also,
classes and objects are functional—the new and move-right methods return
new objects. In this example, the object p2 is a different object from p1, which
retains the original (1, 5) coordinates.

8.2 Inheritance

Classes and objects support inheritance (including multiple inheritance) with
the extends directive. The following definition of Point3D defines a point with
x, y, and z fields. The new object inherits all of the methods and fields of the
parent classes/objects.

Z. =
z = 0

Point3D. =
extends $(Point)
extends $(Z)
class Point3D

print() =
println($"The 3D point is ($(x), $(y), $(z))")

The "new" method was not redefined, so this
defines a new point (1, 5, 0).
p = $(Point3D.new 1, 5)

9 Special objects/sections

Objects provide one way to manage the OMake namespace. There are also four
special objects that are further used to control the namespace.

omake (1) 21 Version: 0.9.6.6, November 5, 2005

9.1 private. 9 SPECIAL OBJECTS/SECTIONS

9.1 private.

The private. section is used to define variables that are private to the current
file/scope. The values are not accessible outside the scope. Variables defined in
a private. object can be accessed only from within the section where they are
defined.

Obj. =
private. =

X = 1

print() =
println(The value of X is: $(X))

Prints:
The private value of X is: 1
Obj.print()

This is an error--X is private in Obj
y = $(Obj.X)

In addition, private definitions do not affect the global value of a variable.

The public value of x is 1
x = 1
f() =

println(The public value of x is: $(x))

This object uses a private value of x
Obj. =

private. =
x = 2

print() =
x = 3
println(The private value of x is: $(x))
f()

Prints:
The private value of x is: 3
The public value of x is: 1
Obj.print()

Private variables have two additional properties.

1. Private variables are local to the file in which they are defined.

2. Private variables are not exported by the export directive, unless they
are mentioned explicitly.

omake (1) 22 Version: 0.9.6.6, November 5, 2005

9.2 protected. 9 SPECIAL OBJECTS/SECTIONS

private. =
FLAG = true

section
FLAG = false
export

FLAG is still true
section

FLAG = false
export FLAG

FLAG is now false

9.2 protected.

The protected. object is used to define fields that are local to an object. They
can be accessed as fields, but they are not passed dynamically to other functions.
The purpose of a protected variable is to prevent a variable definition within
the object from affecting other parts of the project.

X = 1
f() =

println(The public value of X is: $(X))

Prints:
The public value of X is: 2
section

X = 2
f()

X is a protected field in the object
Obj. =

protected. =
X = 3

print() =
println(The protected value of X is: $(X))
f()

Prints:
The protected value of X is: 3
The public value of X is: 1
Obj.print()

omake (1) 23 Version: 0.9.6.6, November 5, 2005

9.3 public. 9 SPECIAL OBJECTS/SECTIONS

This is legal, it defines Y as 3
Y = $(Obj.X)

In general, it is a good idea to define object variables as protected. The
resulting code is more modular because variables in your object will not produce
unexpected clashes with variables defined in other parts of the project.

9.3 public.

The public. object is used to specify public dynamically-scoped variables. In
the following example, the public. object specifies that the value X = 4 is to
be dynamically scoped. Public variables are not defined as fields of an object.

X = 1
f() =

println(The public value of X is: $(X))

Prints:
The public value of X is: 2
section

X = 2
f()

Obj. =
protected. =

X = 3

print() =
println(The protected value of X is: $(X))
public. =

X = 4
f()

Prints:
The protected value of X is: 3
The public value of X is: 4
Obj.print()

9.4 static.

The static. object is used to specify values that are persistent across runs
of OMake. They are frequently used for configuring a project. Configuring
a project can be expensive, so the static. object ensure that the configura-
tion is performed just once. In the following (somewhat trivial) example, a
static section is used to determine if the LATEX command is available. The
$(where latex) function returns the full pathname for latex, or false if the
command is not found.

omake (1) 24 Version: 0.9.6.6, November 5, 2005

9.5 Short syntax for scoping objects 9 SPECIAL OBJECTS/SECTIONS

static. =
LATEX_ENABLED = false
print(--- Determining if LaTeX is installed)
if $(where latex)

LATEX_ENABLED = true
export

if $(LATEX_ENABLED)
println($’(enabled)’)

else
println($’(disabled)’)

As a matter of style, a static. section that is used for configuration should
print what it is doing, using --- as a print prefix.

9.5 Short syntax for scoping objects

The usual dot-notation can be used for private, protected, and public variables
(but not static variables).

Public definition of X
public.X = 1

Private definition of X
private.X = 2

Prints:
The public value of X is: 1
The private value of X is: 2
println(The public value of X is: $(public.X))
println(The private value of X is: $(private.X))

9.6 Modular programming

The scoping objects help provide a form of modularity. When you write a new
file or program, explicit scoping declarations can be used to define an explicit
interface for your code, and help avoid name clashes with other parts of the
project. Variable definitions are public by default, but you can control this with
private definitions.

These variables are private to this file
private. =

FILES = foo1 foo2 foo3
SUFFIX = .o
OFILES = $(addsuffix $(SUFFIX), $(FILES))

These variables are public

omake (1) 25 Version: 0.9.6.6, November 5, 2005

10 RULES

public. =
CFLAGS += -g

Build the files with the -g option
$(OFILES):

10 Rules

Rules are used by OMake to specify how to build files. At its simplest, a rule
has the following form.

<target>: <dependencies>
<commands>

The <target> is the name of a file to be built. The <dependencies> are a
list of files that are needed before the <target> can be built. The <commands>
are a list of indented lines specifying commands to build the target. For example,
the following rule specifies how to compile a file hello.c.

hello.o: hello.c
$(CC) $(CFLAGS) -c -o hello.o hello.c

This rule states that the hello.o file depends on the hello.c file. If the
hello.c file has changed, the command $(CC) $(CFLAGS) -c -o hello.o hello.c
is to be executed to update the target file hello.o.

A rule can have an arbitrary number of commands. The individual command
lines are executed independently by the command shell. The commands do not
have to begin with a tab, but they must be indented from the dependency line.

In addition to normal variables, the following special variables may be used
in the body of a rule.

• $*: the target name, without a suffix.

• $@: the target name.

• $^: a list of the sources, in alphabetical order, with duplicates removed.

• $+: all the sources, in the original order.

• $<: the first source.

For example, the above hello.c rule may be simplified as follows.

hello.o: hello.c
$(CC) $(CFLAGS) -c -o $@ $<

Unlike normal values, the variables in a rule body are expanded lazily, and
binding is dynamic. The following function definition illustrates some of the
issues.

omake (1) 26 Version: 0.9.6.6, November 5, 2005

10.1 Implicit rules 10 RULES

CLibrary(name, files) =
OFILES = $(addsuffix .o, $(files))

$(name).a: $(OFILES)
$(AR) cq $@ $(OFILES)

This function defines a rule to build a program called $(name) from a list
of .o files. The files in the argument are specified without a suffix, so the first
line of the function definition defines a variable OFILES that adds the .o suffix
to each of the file names. The next step defines a rule to build a target library
$(name).a from the $(OFILES) files. The expression $(AR) is evaluated when
the function is called, and the value of the variable AR is taken from the caller’s
scope (see also the section on Scoping).

10.1 Implicit rules

Rules may also be implicit. That is, the files may be specified by wildcard
patterns. The wildcard character is %. For example, the following rule specifies
a default rule for building .o files.

%.o: %.c
$(CC) $(CFLAGS) -c -o $@ $*.c

This rule is a template for building an arbitrary .o file from a .c file.
By default, implicit rules are only used for the targets in the current di-

rectory. However subdirectories included via the .SUBDIRS rules inherit all the
implicit rules that are in scope (see also the section on Scoping).

10.2 Bounded implicit rules

Implicit rules may specify the set of files they apply to. The following syntax is
used.

<targets>: <pattern>: <dependencies>
<commands>

For example, the following rule applies only to the files a.o and b.o.

a.o b.o: %.o: %.c
$(CC) $(CFLAGS) -DSPECIAL -c $*.c

10.3 section

Frequently, the commands in a rule body are expressions to be evaluated by the
shell. omake also allows expressions to be evaluated by omake itself.

The syntax of these “computed rules” uses the section expression. The
following rule uses the omake IO functions to produce the target hello.c.

omake (1) 27 Version: 0.9.6.6, November 5, 2005

10.4 section rule 11 SPECIAL DEPENDENCIES

hello.c:
section

FP = fopen(hello.c, w)
fprintln($(FP), $""#include <stdio.h> int main() { printf("Hello world\n"); }"")
close($(FP))

This example uses the quotation $""..."" to quote the text being printed.
These quotes are not included in the output file. The fopen, fprintln, and
close functions perform file IO as discussed in the IO section.

In addition, commands that are function calls, or special expressions, are
interpreted correctly. Since the fprintln function can take a file directly, the
above rule can be abbreviated as follows.

hello.c:
fprintln($@, $""#include <stdio.h> int main() { printf("Hello world\n"); }"")

10.4 section rule

Rules can also be computed using the section rule form, where a rule body
is expected instead of an expression. In the following rule, the file a.c is copied
onto the hello.c file if it exists, otherwise hello.c is created from the file
default.c.

hello.c:
section rule

if $(target-exists a.c)
hello.c: a.c

cat a.c > hello.c
else

hello.c: default.c
cp default.c hello.c

11 Special dependencies

11.1 :exists:

In some cases, the contents of a dependency do not matter, only whether the
file exists or not. In this case, the :exists: qualifier can be used for the
dependency.

foo.c: a.c :exists: .flag
if $(test -e .flag)

$(CP) a.c $@

omake (1) 28 Version: 0.9.6.6, November 5, 2005

11.2 :effects: 12 .SCANNER RULES

11.2 :effects:

Some commands produce files by side-effect. For example, the latex (1) com-
mand produces a .aux file as a side-effect of producing a .dvi file. In this case,
the :effects: qualifier can be used to list the side-effect explicitly. omake is
careful to avoid simultaneously running programs that have overlapping side-
effects.

paper.dvi: paper.tex :effects: paper.aux
latex paper

11.3 :value:

The :value: dependency is used to specify that the rule execution depends on
the value of an expression. For example, the following rule

a: b c :value: $(X)
...

specifies that “a” should be recompiled if the value of $(X) changes (X
does not have to be a filename). This is intended to allow greater control over
dependencies.

In addition, it can be used instead of other kinds of dependencies. For
example, the following rule:

a: b :exists: c
commands

is the same as

a: b :value: $(target-exists c)
commands

Notes:

• The values are arbitrary (they are not limited to variables)

• The values are evaluated at rule expansion time, so expressions containing
variables like $@, $^, etc are legal.

12 .SCANNER rules

Scanner rules define a way to specify automatic dependency scanning. A .SCANNER
rule has the following form.

.SCANNER: target: dependencies
commands

omake (1) 29 Version: 0.9.6.6, November 5, 2005

12 .SCANNER RULES

The rule is used to compute additional dependencies that might be defined in
the source files for the specified target. The scanner produces dependencies for
the specified target (which may be a pattern) by running the commands, which
must produce output that is compatible with omake. For example, on GNU
systems the gcc -MM foo.c produces dependencies for the file foo.c (based on
#include information).

We can use this to specify a scanner for C files that adds the scanned de-
pendencies for the .o file. The following scanner specifies that dependencies
for a file, say foo.o can be computed by running gcc -MM foo.c. Further-
more, foo.c is a dependency, so the scanner should be recomputed whenever
the foo.c file changes.

.SCANNER: %.o: %.c
gcc -MM $<

Let’s suppose that the command gcc -MM foo.c prints the following line.

foo.o: foo.h /usr/include/stdio.h

The result is that the files foo.h and /usr/include/stdio.h are considered
to be dependencies of foo.o—that is, foo.o should be rebuilt if either of these
files changes.

This works, to an extent. One nice feature is that the scanner will be re-run
whenever the foo.c file changes. However, one problem is that dependencies
in C are recursive. That is, if the file foo.h is modified, it might include other
files, establishing further dependencies. What we need is to re-run the scanner
if foo.h changes too.

We can do this with a value dependency. The variable $& is defined as the
dependency results from any previous scan. We can add these as dependencies
using the digest function, which computes an MD5 digest of the files.

.SCANNER: %.o: %.c :value: $(digest $&)
gcc -MM $<

Now, when the file foo.h changes, its digest will also change, and the scanner
will be re-run because of the value dependency (since $& will include foo.h).

This still is not quite right. The problem is that the C compiler uses a
search-path for include files. There may be several versions of the file foo.h,
and the one that is chosen depends on the include path. What we need is to
base the dependencies on the search path.

The $(digest-in-path-optional ...) function computes the digest based
on a search path, giving us a solution that works.

.SCANNER: %.o: %.c :value: $(digest-in-path-optional $(INCLUDES), $&)
gcc -MM $(INCLUDES) $<

omake (1) 30 Version: 0.9.6.6, November 5, 2005

12.1 Named scanners, and the :scanner: target 12 .SCANNER RULES

12.1 Named scanners, and the :scanner: target

Sometimes it may be useful to specify explicitly which scanner should be used in
a rule. For example, we might compile .c files with different options, or (heaven
help us) we may be using both gcc and the Microsoft Visual C++ compiler cl.
In general, the target of a .SCANNER is not tied to a particular target, and we
may name it as we like.

.SCANNER: scan-gcc-%.c: %.c :value: $(digest-in-path-optional $(INCLUDES), $&)
gcc -MM $(INCLUDES) $<

.SCANNER: scan-cl-%.c: %.c :value: $(digest-in-path-optional $(INCLUDES), $&)
cl --scan-dependencies-or-something $(INCLUDES) $<

The next step is to define explicit scanner dependencies. The :scanner:
dependency is used for this. In this case, the scanner dependencies are specified
explicitly.

$(GCC_FILES): %.o: %.c :scanner: scan-gcc-%c
gcc ...

$(CL_FILES): %.obj: %.c :scanner: scan-cl-%c
cl ...

Explicit :scanner: scanner specification may also be used to state that a
single .SCANNER rule should be used to generate dependencies for more than one
target. For example,

.SCANNER: scan-all-c: $(GCC_FILES) :value: $(digest-in-path-optional $(INCLUDES), $&)
gcc -MM $(INCLUDES) $(GCC_FILES)

$(GCC_FILES): %.o: %.c :scanner: scan-all-c
...

The above has the advantage of only running gcc once and a disadvantage
that when a single source file changes, all the files will end up being re-scanned.

12.2 Notes

In most cases, you won’t need to define scanners of your own. The standard
installation includes default scanners (both explicitly and implicitly named ones)
for C, OCaml, and LaTeX files.

The SCANNER_MODE variable controls the usage of implicit scanner dependen-
cies. See the documentation for the SCANNER_MODE variable in omake-root(1)
for detail.

The explicit :scanner: dependencies reduce the chances of scanner mis-
specifications. In large complicated projects it might be a good idea to set
SCANNER_MODE to error and use only the named .SCANNER rules and explicit
:scanner: specifications.

omake (1) 31 Version: 0.9.6.6, November 5, 2005

13 OTHER SPECIAL TARGETS

13 Other special targets

There are several other special targets that define special actions to be take by
omake.

13.1 .DEFAULT

The .DEFAULT target specifies a target to be built by default if omake is run
without explicit targets. The following rule instructs omake to build the pro-
gram hello by default

.DEFAULT: hello

13.2 .SUBDIRS

The .SUBDIRS target is used to specify a set of subdirectories that are part of the
project. Each subdirectory should have its own OMakefile, which is evaluated
in the context of the current environment.

.SUBDIRS: src doc tests

This rule specifies that the OMakefiles in each of the src, doc, and tests
directories should be read.

In some cases, especially when the OMakefiles are very similar in a large
number of subdirectories, it is inconvenient to have a separate OMakefile for
each directory. If the .SUBDIRS rule has a body, the body is used instead of the
OMakefile.

.SUBDIRS: src1 src2 src3
println(Subdirectory $(CWD))
.DEFAULT: lib.a

In this case, the src1, src2, and src3 files do not need OMakefiles. Fur-
thermore, if one exists, it is ignored. The following includes the file if it exists.

.SUBDIRS: src1 src2 src3
if $(file-exists OMakefile)

include OMakefile
.DEFAULT: lib.a

13.3 .INCLUDE

The .INCLUDE target is like the include directive, but it specifies a rule to build
the file if it does not exist.

.INCLUDE: config
echo "CONFIG_READ = true" > config

echo CONFIG_READ is $(CONFIG_READ)

omake (1) 32 Version: 0.9.6.6, November 5, 2005

13.4 .PHONY 14 RULE SCOPING

13.4 .PHONY

A “phony” target is a target that is not a real file, but exists to collect a set of
dependencies. Phony targets are specified with the .PHONY rule. In the following
example, the install target does not correspond to a file, but it corresponds to
some commands that should be run whenever the install target is built (for
example, by running omake install).

.PHONY: install

install: myprogram.exe
cp myprogram.exe /usr/bin

14 Rule scoping

As we have mentioned before, omake is a scoped language. This provides great
flexibility—different parts of the project can define different configurations with-
out interfering with one another (for example, one part of the project might be
compiled with CFLAGS=-O3 and another with CFLAGS=-g).

But how is the scope for a target file selected? Suppose we are building a
file dir/foo.o. omake uses the following rules to determine the scope.

• First, if there is an explicit rule for building dir/foo.o (a rule with no
wildcards), the context for that rule determines the scope for building the
target.

• Otherwise, the directory dir/ must be part of the project. This normally
means that a configuration file dir/OMakefile exists (although, see the
.SUBDIRS section for another way to specify the OMakefile). In this case,
the scope of the target is the scope at the end of the dir/OMakefile.

To illustrate rule scoping, let’s go back to the example of a “Hello world”
program with two files. Here is an example OMakefile (the two definitions of
CFLAGS are for illustration).

The executable is compiled with debugging
CFLAGS = -g
hello: hello_code.o hello_lib.o

$(CC) $(CFLAGS) -o $@ $+

Redefine CFLAGS
CFLAGS += -O3

In this project, the target hello is explicit. The scope of the hello target is
the line beginning with hello:, where the value of CFLAGS is -g. The other two
targets, hello_code.o and hello_lib.o do not appear as explicit targets, so
their scope is at the end of the OMakefile, where the CFLAGS variable is defined

omake (1) 33 Version: 0.9.6.6, November 5, 2005

14.1 Scoping of implicit rules 14 RULE SCOPING

to be -g -O3. That is, hello will be linked with CFLAGS=-g and the .o files
will be compiled with CFLAGS=-g -O3.

We can change this behavior for any of the targets by specifying them as
explicit targets. For example, suppose we wish to compile hello_lib.o with a
preprocessor variable LIBRARY.

The executable is compiled with debugging
CFLAGS = -g
hello: hello_code.o hello_lib.o

$(CC) $(CFLAGS) -o $@ $+

Compile hello_lib.o with CFLAGS = -g -DLIBRARY
section

CFLAGS += -DLIBRARY
hello_lib.o:

Redefine CFLAGS
CFLAGS += -O3

In this case, hello_lib.o is also mentioned as an explicit target, in a
scope where CFLAGS=-g -DLIBRARY. Since no rule body is specified, it is com-
piled using the usual implicit rule for building .o files (in a context where
CFLAGS=-g -DLIBRARY).

14.1 Scoping of implicit rules

Implicit rules (rules containing wildcard patterns) are not global, they follow
the normal scoping convention. This allows different parts of a project to have
different sets of implicit rules. If we like, we can modify the example above to
provide a new implicit rule for building hello_lib.o.

The executable is compiled with debugging
CFLAGS = -g
hello: hello_code.o hello_lib.o

$(CC) $(CFLAGS) -o $@ $+

Compile hello_lib.o with CFLAGS = -g -DLIBRARY
section

%.o: %.c
$(CC) $(CFLAGS) -DLIBRARY -c $<

hello_lib.o:

Redefine CFLAGS
CFLAGS += -O3

In this case, the target hello_lib.o is built in a scope with a new im-
plicit rule for building %.o files. The implicit rule adds the -DLIBRARY op-

omake (1) 34 Version: 0.9.6.6, November 5, 2005

14.2 Scoping of .SCANNER rules 14 RULE SCOPING

tion. This implicit rule is defined only for the target hello_lib.o; the target
hello_code.o is built as normal.

14.2 Scoping of .SCANNER rules

Scanner rules are scoped the same way as normal rules. If the .SCANNER rule is
explicit (containing no wildcard patterns), then the scope of the scan target is
the same as the the rule. If the .SCANNER rule is implicit, then the environment
is taken from the :scanner: dependency.

The executable is compiled with debugging
CFLAGS = -g
hello: hello_code.o hello_lib.o

$(CC) $(CFLAGS) -o $@ $+

scanner for .c files
.SCANNER: scan-c-%.c: %.c

$(CC) $(CFLAGS) -MM $<

Compile hello_lib.o with CFLAGS = -g -DLIBRARY
section

CFLAGS += -DLIBRARY
hello_lib.o: hello_lib.c :scanner: scan-c-hello_lib.c

$(CC) $(CFLAGS) -c $<

Compile hello_code.c with CFLAGS = -g -O3
section

CFLAGS += -O3
hello_code.o: hello_code.c :scanner: scan-c-hello_code.c

$(CC) $(CFLAGS) -c $<

Again, this is for illustration—it is unlikely you would need to write a com-
plicated configuration like this! In this case, the .SCANNER rule specifies that
the C-compiler should be called with the -MM flag to compute dependencies. For
the target hello_lib.o, the scanner is called with CFLAGS=-g -DLIBRARY, and
for hello_code.o it is called with CFLAGS=-g -O3.

14.3 Scoping for .PHONY targets

Phony targets (targets that do not correspond to files) are defined with a
.PHONY: rule. Phony targets are scoped as usual. The following illustrates
a common mistake, where the .PHONY target is declared after it is used.

This example is broken!
all: hello

hello: hello_code.o hello_lib.o

omake (1) 35 Version: 0.9.6.6, November 5, 2005

15 THE OSH SHELL

$(CC) $(CFLAGS) -o $@ $+

.PHONY: all

This doesn’t work as expected because the .PHONY declaration occurs too
late. The proper way to write this example is to place the .PHONY declaration
first.

Phony targets must be declared before being used
.PHONY: all

all: hello

hello: hello_code.o hello_lib.o
$(CC) $(CFLAGS) -o $@ $+

Phony targets are passed to subdirectories. As a practical matter, it is wise
to declare all .PHONY targets in your root OMakefile, before any .SUBDIRS.
This will ensure that 1) they are considered as phony targets in each of the
sbdirectories, and 2) you can build them from the project root.

.PHONY: all install clean

.SUBDIRS: src lib clib

15 The OSH shell

OMake also includes a standalone command-line interpreter osh that can be
used as an interactive shell. The shell uses the same syntax, and provides the
same features on all platforms omake supports, including Win32.

15.1 Startup

On startup, osh reads the file ~/.oshrc if it exists. The syntax of this file is
the same as an OMakefile. The following additional variables are significant.

prompt The prompt variable specifies the command-line prompt. It can be a
simple string.

prompt = osh>

Or you may choose to define it as a function of no arguments.

prompt() =
return $"<$(USER):$(HOST) $(homename $(CWD))>"

omake (1) 36 Version: 0.9.6.6, November 5, 2005

15.2 Aliases 15 THE OSH SHELL

An example of the latter prompt is as follows.

<jyh:kenai.yapper.org ~>cd links/omake
<jyh:kenai.yapper.org ~/links/omake>

ignoreeof If the ignoreeof is true, then osh will not exit on a terminal end-
of-file (usually ^D on Unix systems).

15.2 Aliases

Command aliases are defined by adding functions to the Shell. object. The
following alias adds the -AF option to the ls command.

Shell. +=
ls(argv) =

"ls" -AF $(argv)

Quoted commands do not undergo alias expansion. The quotation "ls"
prevents the alias from being recursive.

15.3 Interactive syntax

The interactive syntax in osh is the same as the syntax of an OMakefile, with
one exception in regard to indentation. The line before an indented block must
have a colon at the end of the line. A block is terminated with a . on a line
by itself, or ^D. In the following example, the first line if true has no body,
because there is no colon.

The following if has no body
osh>if true
The following if has a body
osh>if true:
if> if true:
if> println(Hello world)
if> .
Hello world

Note that osh makes some effort to modify the prompt while in an indented
body, and it auto-indents the text.

The colon signifier is also allowed in files, although it is not required.

15.4 See also

See Section omake-shell for more information on the shell language, and Section
omake-system for more information on job control.

omake (1) 37 Version: 0.9.6.6, November 5, 2005

17 BOOLEAN FUNCTIONS AND CONTROL FLOW

16 Builtin variables

16.1 OSTYPE

Set to the machine architecture omake is running on. Possible values are Win32
and Unix.

16.2 SYSNAME

The name of the operating system for the current machine.

16.3 NODENAME

The hostname of the current machine.

16.4 OS VERSION

The operating system release.

16.5 MACHINE

The machine architecture, e.g. i386, sparc, etc.

16.6 HOST

Same as NODENAME.

16.7 OMAKE VERSION

Version of OMake.

16.8 USER

The login name of the user executing the process.

16.9 HOME

The home directory of the user executing the process.

17 Boolean functions and control flow

17.1 not

$(not e) : String
e : String

omake (1) 38 Version: 0.9.6.6, November 5, 2005

17.2 equal 17 BOOLEAN FUNCTIONS AND CONTROL FLOW

Boolean values in omake are represented by case-insensitive strings. The
false value can be represented by the strings false, no, nil, undefined or 0,
and everything else is true. The not function negates a Boolean value.

For example, $(not false) expands to the string true, and $(not hello world)
expands to false.

17.2 equal

$(equal e1, e2) : String
e1 : String
e2 : String

The equal function tests for equality of two values.
For example $(equal a, b) expands to false, and $(equal hello world, hello world)

expands to true.

17.3 and

$(and e1, ..., en) : String
e1, ..., en: Sequence

The and function evaluates to the conjunction of its arguments.
For example, in the following code, X is true, and Y is false.

A = a
B = b
X = $(and $(equal $(A), a) true $(equal $(B), b))
Y = $(and $(equal $(A), a) true $(equal $(A), $(B)))

17.4 or

$(or e1, ..., en) : String
e1, ..., en: String Sequence

The or function evaluates to the disjunction of its arguments.
For example, in the following code, X is true, and Y is false.

A = a
B = b
X = $(or $(equal $(A), a) false $(equal $(A), $(B)))
Y = $(or $(equal $(A), $(B)) $(equal $(A), b))

17.5 if

$(if e1, e2[, e3]) : value
e1 : String
e2, e3 : value

omake (1) 39 Version: 0.9.6.6, November 5, 2005

17.6 switch, match 17 BOOLEAN FUNCTIONS AND CONTROL FLOW

The if function represents a conditional based on a Boolean value. For
example $(if $(equal a, b), c, d) evaluates to d.

Conditionals may also be declared with an alternate syntax.

if e1
body1

elseif e2
body2

...
else

bodyn

If the expression e1 is not false, then the expressions in body1 are evaluated
and the result is returned as the value of the conditional. Otherwise, if e1
evaluates to false, the evaluation continues with the e2 expression. If none of
the conditional expressions is true, then the expressions in bodyn are evaluated
and the result is returned as the value of the conditional.

There can be any number of elseif clauses; the else clause is optional.
Note that each branch of the conditional defines its own scope, so variables

defined in the branches are normally not visible outside the conditional. The
export command may be used to export the variables defined in a scope. For
example, the following expression represents a common idiom for defining the
C compiler configuration.

if $(equal $(OSTYPE), Win32)
CC = cl
CFLAGS += /DWIN32
export

else
CC = gcc
CFLAGS += -g -O2
export

17.6 switch, match

The switch and match functions perform pattern matching.
$(switch <arg>, <pattern_1>, <value_1>, ..., <pattern_n>, <value_n>)

$(match <arg>, <pattern_1>, <value_1>, ..., <pattern_n>, <value_n>)
The number of <pattern>/<value> pairs is arbitrary. They strictly alter-

nate; the total number of arguments to <match> must be odd.
The <arg> is evaluated to a string, and compared with <pattern_1>. If

it matches, the result of the expression is <value_1>. Otherwise evaluation
continues with the remaining patterns until a match is found. If no pattern
matches, the value is the empty string.

The switch function uses string comparison to compare the argument with
the patterns. For example, the following expression defines the FILE variable to

omake (1) 40 Version: 0.9.6.6, November 5, 2005

17.7 try 17 BOOLEAN FUNCTIONS AND CONTROL FLOW

be either foo, bar, or the empty string, depending on the value of the OSTYPE
variable.

FILE = $(switch $(OSTYPE), Win32, foo, Unix, bar)

The match function uses regular expression patterns (see the grep function).
If a match is found, the variables $1, $2, ... are bound to the substrings
matched between \(and \) delimiters. The $0 variable contains the entire
match, and $* is an array of the matched substrings. to the matched substrings.

FILE = $(match foo_xyz/bar.a, foo_\\\(.*\\\)/\\\(.*\\\)\.a, foo_$2/$1.o)

The switch and match functions also have an alternate (more usable) form.

match e
case pattern1

body1
case pattern2

body2
...
default

bodyd

If the value of expression e matches pattern_i and no previous pattern,
then body_i is evaluated and returned as the result of the match. The switch
function uses string comparison; the match function uses regular expression
matching.

match $(FILE)
case $".*\(\.[^\/.]*\)"

println(The string $(FILE) has suffix $1)
default

println(The string $(FILE) has no suffix)

17.7 try

try
try-body

catch class1(v1)
catch-body

when expr
when-body

...
finally

finally-body

omake (1) 41 Version: 0.9.6.6, November 5, 2005

17.8 raise 17 BOOLEAN FUNCTIONS AND CONTROL FLOW

The try form is used for exception handling. First, the expressions in the
try-body are evaluated.

If evaluation results in a value v without raising an exception, then the
expressions in the finally-body are evaluated and the value v is returned as
the result.

If evaluation of the try-body results in a exception object obj, the catch
clauses are examined in order. When examining catch clause catch class(v),
if the exception object obj is an instance of the class name class, the variable
v is bound to the exception object, and the expressions in the catch-body are
evaluated.

If a when clause is encountered while a catch body is being evaluated, the
predicate expr is evaluated. If the result is true, evaluation continues with the
expressions in the when-body. Otherwise, the next catch clause is considered
for evaluation.

If evaluation of a catch-body or when-body completes successfully, returning
a value v, without encountering another when clause, then the expressions in
the finally-body are evaluated and the value v is returned as the result.

There can be any number of catch clauses; the finally clause is optional.

17.8 raise

raise exn
exn : Exception

The raise function raises an exception. The exn object can be any object.
However, the normal convention is to raise an Exception object.

17.9 exit

exit(code)
code : Int

The exit function terminates omake abnormally.
$(exit <code>)
The exit function takes one integer argument, which is exit code. Non-zero

values indicate abnormal termination.

17.10 defined

$(defined sequence) : String
sequence : Sequence

The defined function test whether all the variables in the sequence are
currently defined. For example, the following code defines the X variable if it is
not already defined.

omake (1) 42 Version: 0.9.6.6, November 5, 2005

17.11 defined-env 17 BOOLEAN FUNCTIONS AND CONTROL FLOW

if $(not $(defined X))
X = a b c
export

17.11 defined-env

$(defined-env sequence) : String
sequence : String

The defined-env function tests whether a variable is defined as part of the
process environment.

For example, the following code adds the -g compile option if the environ-
ment variable DEBUG is defined.

if $(defined-env DEBUG)
CFLAGS += -g
export

17.12 getenv

$(getenv name) : String
$(getenv name, default) : String

The getenv function gets the value of a variable from the process environ-
ment. The function takes one or two arguments.

In the single argument form, an exception is raised if the variable variable is
not defined in the environment. In the two-argument form, the second argument
is returned as the result if the value is not defined.

For example, the following code defines the variable X to be a space-separated
list of elements of the PATH environment variable if it is defined, and to /bin /usr/bin
otherwise.

X = $(split $(PATHSEP), $(getenv PATH, /bin:/usr/bin))

You may also use the alternate form.

getenv(NAME)
default

17.13 setenv

setenv(name, value)
name : String
value : String

The setenv function sets the value of a variable in the process environment.
Environment variables are scoped like normal variables.

omake (1) 43 Version: 0.9.6.6, November 5, 2005

17.14 get-registry 17 BOOLEAN FUNCTIONS AND CONTROL FLOW

17.14 get-registry

get-registry(hkey, key, field) : String
get-registry(hkey, key, field, default) : String

hkey : String
key : String
field : String

The get-registry function retrieves a string value from the system registry
on Win32. On other architectures, there is no registry.

The hive (I think that is the right word), indicates which part of the registry
to use. It should be one of the following values.

• HKEY_CLASSES_ROOT

• HKEY_CURRENT_CONFIG

• HKEY_CURRENT_USER

• HKEY_LOCAL_MACHINE

• HKEY_USERS

Refer to the Microsoft documentation if you want to know what these mean.
The key is the field you want to get from the registry. It should have a form

like A\B\C (if you use forward slashes, they will be converted to backslashes).
The field is the sub-field of the key.

In the 4-argument form, the default is returned on failure. You may also
use the alternate form.

get-registry(hkey, key, field)
default

17.15 getvar

$(getvar name) : String

The getvar function gets the value of a variable.
An exception is raised if the variable variable is not defined.
For example, the following code defines X to be the string abc.

NAME = foo
foo_1 = abc
X = $(getvar $(NAME)_1)

omake (1) 44 Version: 0.9.6.6, November 5, 2005

17.16 setvar 18 ARRAYS AND SEQUENCES

17.16 setvar

setvar(name, value)
name : String
value : String

The setvar function defines a new variable. For example, the following code
defines the variable X to be the string abc.

NAME = X
setvar($(NAME), abc)

18 Arrays and sequences

18.1 array

$(array elements) : Array
elements : Sequence

The array function creates an array from a sequence. If the <arg> is a
string, the elements of the array are the whitespace-separated elements of the
string, respecting quotes.

In addition, array variables can be declared as follows.

A[] =
<val1>
...
<valn>

In this case, the elements of the array are exactly <val1>, ..., <valn>, and
whitespace is preserved literally.

18.2 split

$(split sep, elements) : Array
sep : String
elements : Sequence

The split function takes two arguments, a string of separators, and a string
argument. The result is an array of elements determined by splitting the ele-
ments by all occurrence of the separator in the elements sequence.

For example, in the following code, the X variable is defined to be the array
/bin /usr/bin /usr/local/bin.

PATH = /bin:/usr/bin:/usr/local/bin
X = $(split :, $(PATH))

The sep argument may be omitted. In this case split breaks its arguments
along the white space. Quotations are not split.

omake (1) 45 Version: 0.9.6.6, November 5, 2005

18.3 concat 18 ARRAYS AND SEQUENCES

18.3 concat

$(concat sep, elements) : String
sep : String
elements : Sequence

The concat function takes two arguments, a separator string, and a sequence
of elements. The result is a string formed by concatenating the elements, placing
the separator between adjacent elements.

For example, in the following code, the X variable is defined to be the string
foo_x_bar_x_baz.

X = foo bar baz
Y = $(concat _x_, $(X))

18.4 length

$(length sequence) : Int
sequence : Sequence

The length function returns the number of elements in its argument.
For example, the expression $(length a b "c d") evaluates to 3.

18.5 nth

$(nth sequence) : value
sequence : Sequence

raises RuntimeException

The nth function returns the nth element of its argument, treated as a list.
Counting starts at 0. An exception is raised if the index is not in bounds.

For example, the expression $(nth 1, a "b c" d) evaluates to "b c".

18.6 rev

$(rev sequence) : Sequence
sequence : Sequence

The rev function returns the elements of a sequence in reverse order. For
example, the expression $(rev a "b c" d) evaluates to d "b c" a.

18.7 string

$(string sequence) : String
sequence : Sequence

The string function flattens a sequence into a single string. This is similar
to the concat function, but the elements are separated by whitespace. The
result is treated as a unit; whitespace is significant.

omake (1) 46 Version: 0.9.6.6, November 5, 2005

18.8 quote 18 ARRAYS AND SEQUENCES

18.8 quote

$(quote sequence) : String
sequence : Sequence

The quote function flattens a sequence into a single string and adds quotes
around the string. Inner quotation symbols are escaped.

For example, the expression $(quote a "b c" d) evaluates to "a \"b c\" d",
and $(quote abc) evaluates to "abc".

18.9 quote-argv

$(quote-argv sequence) : String
sequence : Sequence

The quote-argv function flattens a sequence into a single string, and adds
quotes around the string. The quotation is formed so that a command-line parse
can separate the string back into its components.

18.10 html-string

$(html-string sequence) : String
sequence : Sequence

The html-string function flattens a sequence into a single string, and es-
caped special HTML characters. This is similar to the concat function, but the
elements are separated by whitespace. The result is treated as a unit; whitespace
is significant.

18.11 addsuffix

$(addsuffix suffix, sequence) : Array
suffix : String
sequence : Sequence

The addsuffix function adds a suffix to each component of sequence. The
number of elements in the array is exactly the same as the number of elements
in the sequence.

For example, $(addsuffix .c, a b "c d") evaluates to a.c b.c "c d".c.

18.12 mapsuffix

$(mapsuffix suffix, sequence) : Array
suffix : value
sequence : Sequence

omake (1) 47 Version: 0.9.6.6, November 5, 2005

18.13 addsuffixes 18 ARRAYS AND SEQUENCES

The mapsuffix function adds a suffix to each component of sequence. It is
similar to addsuffix, but uses array concatenation instead of string concatena-
tion. The number of elements in the array is twice the number of elements in
the sequence.

For example, $(mapsuffix .c, a b "c d") evaluates to a .c b .c "c d" .c.

18.13 addsuffixes

$(addsuffixes suffixes, sequence) : Array
suffixes : Sequence
sequence : Sequence

The addsuffixes function adds all suffixes in its first argument to each
component of a sequence. If suffixes has n elements, and sequence has m
elements, the the result has n * m elements.

For example, the $(addsuffixes .c .o, a b c) expressions evaluates to
a.c a.o b.c b.o c.o c.a.

18.14 removeprefix

$(removeprefix prefix, sequence) : Array
prefix : String
sequence : Array

The removeprefix function removes a prefix from each component of a
sequence.

18.15 removesuffix

$(removesuffix sequence) : Array
sequence : String

The removesuffix function removes the suffixes from each component of a
sequence.

For example, $(removesuffix a.c b.foo "c d") expands to a b "c d".

18.16 replacesuffixes

$(replacesuffixes old-suffixes, new-suffixes, sequence) : Array
old-suffixes : Sequence
new-suffixes : Sequence
sequence : Sequence

The replacesuffixes function modifies the suffix of each component in
sequence. The old-suffixes and new-suffixes sequences should have the
same length.

For example, $(replacesuffixes, .h .c, .o .o, a.c b.h c.z) expands
to a.o b.o c.z.

omake (1) 48 Version: 0.9.6.6, November 5, 2005

18.17 addprefix 18 ARRAYS AND SEQUENCES

18.17 addprefix

$(addprefix prefix, sequence) : Array
prefix : String
sequence : Sequence

The addprefix function adds a prefix to each component of a sequence.
The number of element in the result array is exactly the same as the number of
elements in the argument sequence.

For example, $(addprefix foo/, a b "c d") evaluates to foo/a foo/b foo/"c d".

18.18 mapprefix

$(mapprefix prefix, sequence) : Array
prefix : String
sequence : Sequence

The mapprefix function adds a prefix to each component of a sequence. It
is similar to addprefix, but array concatenation is used instead of string con-
catenation. The result array contains twice as many elements as the argument
sequence.

For example, $(mapprefix foo, a b "c d") expands to foo a foo b foo "c d".

18.19 add-wrapper

$(add-wrapper prefix, suffix, sequence) : Array
prefix : String
suffix : String
sequence : Sequence

The add-wrapper functions adds both a prefix and a suffix to each compo-
nent of a sequence. For example, the expression $(add-wrapper dir/, .c, a b)
evaluates to dir/a.c dir/b.c. String concatenation is used. The array result
has the same number of elements as the argument sequence.

18.20 set

$(set sequence) : Array
sequence : Sequence

The set function sorts a set of string components, eliminating duplicates.
For example, $(set z y z "m n" w a) expands to "m n" a w y z.

18.21 mem

$(mem elem, sequence) : Boolean
elem : String
sequence : Sequence

omake (1) 49 Version: 0.9.6.6, November 5, 2005

18.22 intersection 18 ARRAYS AND SEQUENCES

The mem function tests for membership in a sequence.
For example, $(mem "m n", y z "m n" w a) evaluates to true, while $(mem m n, y z "m n" w a)

evaluates to false.

18.22 intersection

$(intersection sequence1, sequence2) : Array
sequence1 : Sequence
sequence2 : Sequence

The intersection function takes two arguments, treats them as sets of
strings, and computes their intersection. The order of the result is undefined,
and it may contain duplicates. Use the set function to sort the result and
eliminate duplicates in the result if desired.

For example, the expression $(intersection c a b a, b a) evaluates to
a b a.

18.23 intersects

$(intersects sequence1, sequence2) : Boolean
sequence1 : Sequence
sequence2 : Sequence

The intersects function tests whether two sets have a non-empty intersec-
tion. This is slightly more efficient than computing the intersection and testing
whether it is empty.

For example, the expression $(intersects a b c, d c e) evaluates to
true, and $(intersects a b c a, d e f) evaluates to false.

18.24 set-diff

$(set-diff sequence1, sequence2) : Array
sequence1 : Sequence
sequence2 : Sequence

The set-diff function takes two arguments, treats them as sets of strings,
and computes their difference (all the elements of the first set that are not
present in the second one). The order of the result is undefined and it may con-
tain duplicates. Use the set function to sort the result and eliminate duplicates
in the result if desired.

For example, the expression $(set-diff c a b a e, b a) evaluates to
c e.

18.25 filter

$(filter patterns, sequence) : Array
patterns : Sequence
sequence : Sequence

omake (1) 50 Version: 0.9.6.6, November 5, 2005

18.26 filter-out 18 ARRAYS AND SEQUENCES

The filter function picks elements from a sequence. The patterns is a non-
empty sequence of patterns, each may contain one occurrence of the wildcard %
character.

For example $(filter %.h %.o, a.c x.o b.h y.o "hello world".c) eval-
uates to x.o b.h y.o.

18.26 filter-out

$(filter-out patterns, sequence) : Array
patterns : Sequence
sequence : Sequence

The filter-out function removes elements from a sequence. The patterns
is a non-empty sequence of patterns, each may contain one occurrence of the
wildcard % character.

For example $(filter-out %.c %.h, a.c x.o b.h y.o "hello world".c)
evaluates to x.o y.o.

18.27 capitalize

$(capitalize sequence) : Array
sequence : Sequence

The capitalize function capitalizes each word in a sequence. For example,
$(capitalize through the looking Glass) evaluates to Through The Looking Glass.

18.28 uncapitalize

$(uncapitalize sequence) : Array
sequence : Sequence

The uncapitalize function uncapitalizes each word in its argument.
For example, $(uncapitalize through the looking Glass) evaluates to

through the looking glass.

18.29 uppercase

$(uppercase sequence) : Array
sequence : Sequence

The uppercase function converts each word in a sequence to uppercase. For
example, $(uppercase through the looking Glass) evaluates to THROUGH THE LOOKING GLASS.

omake (1) 51 Version: 0.9.6.6, November 5, 2005

18.30 lowercase 19 ARITHMETIC

18.30 lowercase

$(lowercase sequence) : Array
sequence : Sequence

The lowercase function reduces each word in its argument to lowercase.
For example, $(lowercase through tHe looking Glass) evaluates to through the looking glass.

18.31 system

system(s)
s : Sequence

The system function is used to evaluate a shell expression. This function is
used internally by omake to evaluate shell commands.

For example, the following program is equivalent to the expression system(ls foo).

ls foo

18.32 shell

$(shell command) : Array
$(shella command) : Array
$(shell-code command) : Int

command : Sequence

The shell function evaluates a command using the command shell, and
returns the whitespace-separated words of the standard output as the result.

The shella function acts similarly, but it returns the lines as separate items
in the array.

The shell-code function returns the exit code. The output is not diverted.
For example, if the current directory contains the files OMakeroot, OMakefile,

and hello.c, then $(shell ls) evaluates to hello.c OMakefile OMakeroot
(on a Unix system).

19 Arithmetic

19.1 int

The int function can be used to create integers. It returns an Int object.
$(int 17).

19.2 float

The float function can be used to create floating-point numbers. It returns a
Float object.

$(float 3.1415926).

omake (1) 52 Version: 0.9.6.6, November 5, 2005

19.3 Basic arithmetic 19 ARITHMETIC

19.3 Basic arithmetic

The following functions can be used to perform basic arithmetic.

• $(neg <numbers>): arithmetic inverse

• $(add <numbers>): addition.

• $(sub <numbers>): subtraction.

• $(mul <numbers>): multiplication.

• $(div <numbers>): division.

• $(mod <numbers>): remainder.

• $(lnot <numbers>): bitwise inverse.

• $(land <numbers>): bitwise and.

• $(lor <numbers>): bitwise or.

• $(lxor <numbers>): bitwise exclusive-or.

• $(lsl <numbers>): logical shift left.

• $(lsr <numbers>): logical shift right.

• $(asr <numbers>): arithmetic shift right.

19.4 Comparisons

The following functions can be used to perform numerical comparisons.

• $(lt <numbers>): less then.

• $(le <numbers>): no more than.

• $(eq <numbers>): equal.

• $(ge <numbers>): no less than.

• $(gt <numbers>): greater than.

• $(ult <numbers>): unsigned less than.

• $(ule <numbers>): unsigned greater than.

• $(uge <numbers>): unsigned greater than or equal.

• $(ugt <numbers>): unsigned greater than.

omake (1) 53 Version: 0.9.6.6, November 5, 2005

20 FIRST-CLASS FUNCTIONS

20 First-class functions

20.1 fun

The fun form introduces anonymous functions.
$(fun <v1>, ..., <vn>, <body>)
The last argument is the body of the function. The other arguments are the

parameter names.
The three following definitions are equivalent.

F(X, Y) =
return($(addsuffix $(Y), $(X)))

F = $(fun X, Y, $(addsuffix $(Y), $(X)))

F =
fun(X, Y)

value $(addsuffix $(Y), $(X))

20.2 apply

The apply operator is used to apply a function.
$(apply <fun>, <args>)
Suppose we have the following function definition.

F(X, Y) =
return($(addsuffix $(Y), $(X)))

The the two expressions below are equivalent.

X = F(a b c, .c)
X = $(apply $(F), a b c, .c)

20.3 applya

The applya operator is used to apply a function to an array of arguments.
$(applya <fun>, <args>)
For example, in the following program, the value of Z is file.c.

F(X, Y) =
return($(addsuffix $(Y), $(X)))

args[] =
file
.c

Z = $(applya $(F), $(args))

omake (1) 54 Version: 0.9.6.6, November 5, 2005

22 FILE OPERATIONS

21 Iteration and mapping

21.1 foreach

The foreach function maps a function over a sequence.

$(foreach <fun>, <args>)

foreach(<var>, <args>)
<body>

For example, the following program defines the variable X as an array a.c b.c c.c.

X =
foreach(x, a b c)

value $(x).c

Equivalent expression
X = $(foreach $(fun x, $(x).c), abc)

There is also an abbreviated syntax.
The export form can also be used in a foreach body. The final value of X

is a.c b.c c.c.

X =
foreach(x, a b c)

X += $(x).c
export

22 File operations

22.1 file, dir

$(file sequence) : File Sequence
sequence : Sequence

$(dir sequence) : Dir Sequence
sequence : Sequence

The file and dir functions define location-independent references to files
and directories. In omake, the commands to build a target are executed in the
target’s directory. Since there may be many directories in an omake project, the
build system provides a way to construct a reference to a file in one directory,
and use it in another without explicitly modifying the file name. The functions
have the following syntax, where the name should refer to a file or directory.

For example, we can construct a reference to a file foo in the current direc-
tory.

omake (1) 55 Version: 0.9.6.6, November 5, 2005

22.2 tmpfile 22 FILE OPERATIONS

FOO = $(file foo)
.SUBDIRS: bar

If the FOO variable is expanded in the bar subdirectory, it will expand to
../foo.

These commands are often used in the top-level OMakefile to provide location-
independent references to top-level directories, so that build commands may
refer to these directories as if they were absolute.

ROOT = $(dir .)
LIB = $(dir lib)
BIN = $(dir bin)

Once these variables are defined, they can be used in build commands in
subdirectories as follows, where $(BIN) will expand to the location of the bin
directory relative to the command being executed.

install: hello
cp hello $(BIN)

22.2 tmpfile

$(tmpfile prefix) : File
$(tmpfile prefix, suffix) : File

prefix : String
suffix : String

The tmpfile function returns the name of a fresh temporary file in the
temporary directory.

22.3 in

$(in dir, exp) : String Array
dir : Dir
exp : expression

The in function is closely related to the dir and file functions. It takes
a directory and an expression, and evaluates the expression in that effective
directory. For example, one common way to install a file is to define a symbol
link, where the value of the link is relative to the directory where the link is
created.

The following commands create links in the $(LIB) directory.

FOO = $(file foo)
install:

ln -s $(in $(LIB), $(FOO)) $(LIB)/foo

omake (1) 56 Version: 0.9.6.6, November 5, 2005

22.4 which 22 FILE OPERATIONS

22.4 which

$(which files) : File Sequence
files : String Sequence

The which function searches for executables in the current command search
path, and returns file values for each of the commands. It is an error if a
command is not found.

22.5 where

The where function is similar to which, except it returns the list of all the loca-
tions of the given executable (in the order in which the corresponding directories
appear in $PATH). In case a command is handled internally by the Shell object,
the first string in the output will describe the command as a built-in function.

% where echo
echo is a Shell object method (a built-in function)
/bin/echo

22.6 exists-in-path

$(exists-in-path files) : String
files : String Sequence

The exists-in-path function tests whether all executables are present in
the current search path.

22.7 basename

$(basename files) : String Sequence
files : String Sequence

The basename function returns the base names for a list of files. The base-
name is the filename with any leading directory components removed.

For example, the expression $(basename dir1/dir2/a.out /etc/modules.conf /foo.ml)
evaluates to a.out modules.conf foo.ml.

22.8 rootname

$(rootname files) : String Sequence
files : String Sequence

The rootname function returns the root name for a list of files. The rootname
is the filename with the final suffix removed.

For example, the expression $(rootname dir1/dir2/a.out /etc/a.b.c /foo.ml)
evaluates to dir1/dir2/a /etc/a.b /foo.

omake (1) 57 Version: 0.9.6.6, November 5, 2005

22.9 dirof 22 FILE OPERATIONS

22.9 dirof

$(dirof files) : Dir Sequence
files : File Sequence

The dirof function returns the directory for each of the listed files.
For example, the expression $(dirof dir/dir2/a.out /etc/modules.conf /foo.ml)

evaluates to the directories dir1/dir2 /etc /.

22.10 fullname

$(fullname files) : String Sequence
files : File Sequence

The fullname function returns the pathname relative to the project root for
each of the files or directories.

22.11 absname

$(absname files) : String Sequence
files : File Sequence

The absname function returns the absolute pathname for each of the files or
directories.

22.12 homename

$(homename files) : String Sequence
files : File Sequence

The homename function returns the name of a file in tilde form, if possible.
The unexpanded forms are computed lazily: the homename function will usually
evaluate to an absolute pathname until the first tilde-expansion for the same
directory.

22.13 suffix

$(suffix files) : String Sequence
files : StringSequence

The suffix function returns the suffixes for a list of files. If a file has no
suffix, the function returns the empty string.

For example, the expression $(suffix dir1/dir2/a.out /etc/a /foo.ml)
evaluates to .out .ml.

omake (1) 58 Version: 0.9.6.6, November 5, 2005

22.14 file-exists, target-exists, target-is-proper 22 FILE OPERATIONS

22.14 file-exists, target-exists, target-is-proper

$(file-exists files) : String
$(target-exists files) : String
$(target-is-proper files) : String

files : File Sequence

The file-exists function checks whether the files listed exist. The target-exists
function is similar to the file-exists function. However, it returns true if the
file exists or if it can be built by the current project. The target-is-proper
returns true only if the file can be generated in the current project.

22.15 filter-exists, filter-targets, filter-proper-targets

$(filter-exists files) : File Sequence
$(filter-targets files) : File Sequence
$(filter-proper-targets) : File Sequence

files : File Sequence

The filter-exists, filter-targets, and filter-proper-targets func-
tions remove files from a list of files.

• filter-exists: the result is the list of files that exist.

• filter-targets: the result is the list of files either exist, or can be built
by the current project.

• filter-proper-targets: the result is the list of files that can be built in
the current project.

One way to create a simple “clean” rule that removes generated files from
the project is by removing all files that can be built in the current project.
CAUTION: you should be careful before you do this. The rule removes any file
that can potentially be reconstructed. There is no check to make sure that the
commands to rebuild the file would actually succeed. Also, note that no file
outside the current project will be deleted.

.PHONY: clean

clean:
rm $(filter-proper-targets $(ls R, .))

See the dependencies-proper function to see an alternate method for re-
moving intermediate files.

If you use CVS, you may wish to use the cvs_realclean program that is
distributed with omake.

omake (1) 59 Version: 0.9.6.6, November 5, 2005

22.16 file-sort 22 FILE OPERATIONS

22.16 file-sort

$(file-sort order, files) : File Sequence
order : String
files : File Sequence

The file-sort function sorts a list of filenames by build order augmented
by a set of sort rules. Sort rules are declared using the .ORDER target. The
.BUILDORDER defines the default order.

$(file-sort <order>, <files>)
For example, suppose we have the following set of rules.

a: b c
b: d
c: d

.DEFAULT: a b c d
echo $(file-sort .BUILDORDER, a b c d)

In the case, the sorter produces the result d b c a. That is, a target is
sorted after its dependencies. The sorter is frequently used to sort files that are
to be linked by their dependencies (for languages where this matters).

There are three important restrictions to the sorter:

• The sorter can be used only within a rule body. The reason for this is
that all dependencies must be known before the sort is performed.

• The sorter can only sort files that are buildable in the current project.

• The sorter will fail if the dependencies are cyclic.

22.17 sort rule

It is possible to further constrain the sorter through the use of sort rules. A sort
rule is declared in two steps. The target must be listed as an .ORDER target; and
then a set of sort rules must be given. A sort rule defines a pattern constraint.

.ORDER: .MYORDER

.MYORDER: %.foo: %.bar

.MYORDER: %.bar: %.baz

.DEFAULT: a.foo b.bar c.baz d.baz
echo $(sort .MYORDER, a.foo b.bar c.baz d.baz)

In this example, the .MYORDER sort rule specifies that any file with a suffix
.foo should be placed after any file with suffix .bar, and any file with suffix
.bar should be placed after a file with suffix .baz.

In this example, the result of the sort is d.baz c.baz b.bar a.foo.

omake (1) 60 Version: 0.9.6.6, November 5, 2005

22.18 file-check-sort 22 FILE OPERATIONS

22.18 file-check-sort

file-check-sort(files)
files : File Sequence

raises RuntimeException

The file-check-sort function checks whether a list of files is in sort order.
If so, the list is returned unchanged. If not, the function raises an exception.

$(file-check-sort <order>, <files>)

22.19 glob

$(glob strings) : Node Array
strings : String Sequence

$(glob options, strings) : Node Array
options : String
strings : String Sequence

The glob function performs glob-expansion.
The . and .. entries are always ignored.
The options are:

b Do not perform csh(1)-style brace expansion.

e The \ character does not escape special characters.

n If an expansion fails, return the expansion literally instead of aborting.

i If an expansion fails, it expands to nothing.

. Allow wildcard patterns to match files beginning with a .

A Return all files, including files that begin with a .

D Match only directory files.

C Ignore files according to cvs(1) rules.

P Include only proper subdirectories.

In addition, the following variables may be defined that affect the behavior
of glob.

GLOB OPTIONS A string containing default options.

GLOB IGNORE A list of shell patterns for filenames that glob should ig-
nore.

GLOB ALLOW A list of shell patterns. If a file does not match a pattern in
GLOB_ALLOW, it is ignored.

The returned files are sorted by name.

omake (1) 61 Version: 0.9.6.6, November 5, 2005

22.20 ls 22 FILE OPERATIONS

22.20 ls

$(ls files) : Node Array
files : String Sequence

$(ls options, files) : Node Array
files : String Sequence

The ls function returns the filenames in a directory.
The . and .. entries are always ignored. The patterns are shell-style patterns,

and are glob-expanded.
The options include all of the options to the glob function, plus the following.

R Perform a recursive listing.

The GLOB_ALLOW and GLOB_IGNORE variables can be defined to control the
globbing behavior. The returned files are sorted by name.

22.21 subdirs

$(subdirs dirs) : Dir Array
dirs : String Sequence

$(subdirs options, dirs) : Dir Array
options : String
dirs : String Sequence

The subdirs function returns all the subdirectories of a list of directories,
recursively.

The possible options are the following:

A Return directories that begin with a .

C Ignore files according to .cvsignore rules.

P Include only proper subdirectories.

22.22 mkdir

mkdir(mode, node...)
mode : Int
node : Node

raises RuntimeException

mkdir(node...)
node : Node

raises RuntimeException

The mkdir function creates a directory, or a set of directories. The following
options are supported.

omake (1) 62 Version: 0.9.6.6, November 5, 2005

22.23 Stat 22 FILE OPERATIONS

-m mode Specify the permissions of the created directory.

-p Create parent directories if they do not exist.

– Interpret the remaining names literally.

22.23 Stat

The Stat object represents the result returned by the stat and lstat functions.
It contains the following fields.

A stat object has the following fields. Not all of the fields will have meaning
on all architectures.

dev : the device number.

ino : the inode number.

kind : the kind of the file, one of the following: REG (regular file), DIR (di-
rectory), CHR (character device), BLK (block device), LNK (symbolic link),
FIFO (named pipe), SOCK (socket).

perm : access rights, represented as an integer.

nlink : number of links.

uid : user id of the owner.

gid : group id of the file’s group.

rdev : device minor number.

size : size in bytes.

atime : last access time, as a floating point number.

mtime : last modification time, as a floating point number.

ctime : last status change time, as a floating point number.

22.24 stat

$(stat node...) : Stat
node : Node or Channel

$(lstat node...) : Stat
node : Node or Channel

raises RuntimeException

The stat functions return file information. If the file is a symbolic link, the
stat function refers to the destination of the link; the lstat function refers to
the link itself.

omake (1) 63 Version: 0.9.6.6, November 5, 2005

22.25 unlink 22 FILE OPERATIONS

22.25 unlink

$(unlink file...)
file : File

#(rm file...)
file : File

$(rmdir dir...)
dir : Dir

raises RuntimeException

The unlink and rm functions remove a file. The rmdir function removes a
directory.

The following options are supported for rm and rmdir.

-f ignore nonexistent files, never prompt.

-i prompt before removal.

-r remove the contents of directories recursively.

-v explain what is going on.

– the rest of the values are interpreted literally.

22.26 rename

rename(old, new)
old : Node
new : Node

mv(nodes... dir)
nodes : Node Sequence
dir : Dir

cp(nodes... dir)
nodes : Node Sequence
dir : Dir

raises RuntimeException

The rename function changes the name of a file or directory named old to
new.

The mv function is similar, but if new is a directory, and it exists, then the
files specified by the sequence are moved into the directory. If not, the behavior
of mv is identical to rename. The cp function is similar, but the original file is
not removed.

The mv and cp functions take the following options.

-f Do not prompt before overwriting.

-i Prompt before overwriting.

-v Explain what it happening.

omake (1) 64 Version: 0.9.6.6, November 5, 2005

22.27 link 22 FILE OPERATIONS

-r Copy the contents of directories recursively.

– Interpret the remaining arguments literally.

22.27 link

link(src, dst)
src : Node
dst : Node

raises RuntimeException

The link function creates a hard link named dst to the file or directory src.
Hard links are not supported in Win32.
Normally, only the superuser can create hard links to directories.

22.28 symlink

symlink(src, dst)
src : Node
dst : Node

raises RuntimeException

The symlink function creates a symbolic link dst that points to the src file.
The link name is computed relative to the target directory. For example,

the expression $(symlink a/b, c/d) creates a link named c/d -> ../a/b.
Symbolic links are not supported in Win32.

22.29 readlink

$(readlink node...) : Node
node : Node

The readlink function reads the value of a symbolic link.

22.30 chmod

chmod(mode, dst...)
mode : Int
dst : Node or Channel

chmod(mode dst...)
mode : String
dst : Node Sequence

raises RuntimeException

The chmod function changes the permissions of the targets. The chmod
function does nothing on Win32 platforms.

Options:

omake (1) 65 Version: 0.9.6.6, November 5, 2005

22.31 chown 22 FILE OPERATIONS

-v Explain what is happening.

-r Change files and directories recursively.

-f Continue on errors.

– Interpret the remaining argument literally.

22.31 chown

chown(uid, gid, node...)
uid : Int
gid : Int
node : Node or Channel

chown(uid, node...)
uid : Int
node : Node or Channel

raises RuntimeException

The chown function changes the user and group id of the file. If the gid is
not specified, it is not changed. If either id is -1, that id is not changed.

22.32 umask

$(umask mode) : Int
mode : Int

raises RuntimeException

Sets the file mode creation mask. The previous mask is returned. This value
is not scoped, changes have global effect.

22.33 digest

$(digest files) : String Array
file : File Array

raises RuntimeException

$(digest-optional files) : String Array
file : File Array

The digest and digest-optional functions compute MD5 digests of files.
The digest function raises an exception if a file does no exist. The digest-optional
returns false if a file does no exist. MD5 digests are cached.

omake (1) 66 Version: 0.9.6.6, November 5, 2005

22.34 find-in-path 22 FILE OPERATIONS

22.34 find-in-path

$(find-in-path path, files) : File Array
path : Dir Array
files : String Array

raises RuntimeException

$(find-in-path-optional path, files) : File Array

The find-in-path function searches for the files in a search path. Only
the tail of the filename is significant. The find-in-path function raises an
exception if the file can’t be found. The find-in-path-optional function
silently removes files that can’t be found.

22.35 digest-path

$(digest-in-path path, files) : String/File Array
path : Dir Array
files : String Array

raises RuntimeException

$(digest-in-path-optional path, files) : String/File Array

The digest-in-path function searches for the files in a search path and
returns the file and digest for each file. Only the tail of the filename is significant.
The digest-in-path function raises an exception if the file can’t be found.
The digest-in-path-optional function silently removes elements that can’t
be found.

22.36 rehash

rehash()

The rehash function resets all search paths.

22.37 vmount

vmount(src, dst)
src, dst : Dir

vmount(flags, src, dst)
flags : String
src, dst : Dir

“Mount” the src directory on the dst directory. This is a virtual mount,
changing the behavior of the $(file ...) function. When the $(file str)
function is used, the resulting file is taken relative to the src directory if the
file exists. Otherwise, the file is relative to the current directory.

omake (1) 67 Version: 0.9.6.6, November 5, 2005

22.38 add-project-directories 22 FILE OPERATIONS

The main purpose of the vmount function is to support multiple builds with
separate configurations or architectures.

The options are as follows.

l Create symbolic links to files in the src directory.

c Copy files from the src directory.

Mount operations are scoped.

22.38 add-project-directories

add-project-directories(dirs)
dirs : Dir Array

Add the directories to the set of directories that omake considers to be part
of the project. This is mainly used to avoid omake complaining that the current
directory is not part of the project.

22.39 test

test(exp) : Bool
exp : String Sequence

The expression grammar is as follows:

• ! expression : expression is not true

• expression1 -a expression2 : both expressions are true

• expression1 -o expression2 : at least one expression is true

• (expression) : expression is true

The base expressions are:

• -n string : The string has nonzero length

• -z string : The string has zero length

• string = string : The strings are equal

• string != string : The strings are not equal

• int1 -eq int2 : The integers are equal

• int1 -ne int2 : The integers are not equal

• int1 -gt int2 : int1 is larger than int2

• int1 -ge int2 : int2 is not larger than int1

omake (1) 68 Version: 0.9.6.6, November 5, 2005

22.39 test 22 FILE OPERATIONS

• int1 -lt int2 : int1 is smaller than int2

• int1 -le int2 : int1 is not larger than int2

• file1 -ef file2 : On Unix, file1 and file2 have the same device and inode
number. On Win32, file1 and file2 have the same name.

• file1 -nt file2 : file1 is newer than file2

• file1 -ot file2 : file1 is older than file2

• -b file : The file is a block special file

• -c file : The file is a character special file

• -d file : The file is a directory

• -e file : The file exists

• -f file : The file is a normal file

• -g file : The set-group-id bit is set on the file

• -G file : The file’s group is the current effective group

• -h file : The file is a symbolic link (also -L)

• -k file : The file’s sticky bit is set

• -L file : The file is a symbolic link (also -h)

• -O file : The file’s owner is the current effective user

• -p file : The file is a named pipe

• -r file : The file is readable

• -s file : The file is empty

• -S file : The file is a socket

• -u file : The set-user-id bit is set on the file

• -w file : The file is writable

• -x file : The file is executable

A string is any sequence of characters; leading - characters are allowed.
An int is a string that can be interpreted as an integer. Unlike traditional

versions of the test program, the leading characters may specify an arity. The
prefix 0b means the numbers is in binary; the prefix 0o means the number is
in octal; the prefix 0x means the number is in hexadecimal. An int can also be
specified as -l string, which evaluates to the length of the string.

A file is a string that represents the name of a file.

omake (1) 69 Version: 0.9.6.6, November 5, 2005

22.40 find 23 IO FUNCTIONS

22.40 find

find(exp) : Node Array
exp : String Sequence

The find function searches a directory recursively, returning the files for
which the expression evaluates to true.

The expression argument uses the same syntax as the test function, with
the following exceptions.

1. The expression may begin with a directory. If not specified, the current
directory is searched.

2. The {} string expands to the current file being examined.

The syntax of the expression is the same as test, with the following addi-
tions.

• -name string : The current file matches the regular expression.

23 IO functions

23.1 Standard channels

The following variables define the standard channels.

stdin stdin : InChannel

The standard input channel, open for reading.

stdout stdout : OutChannel

The standard output channel, open for writing.

stderr stderr : OutChannel

The standard error channel, open for writing.

23.2 fopen

The fopen function opens a file for reading or writing.

$(fopen file, mode) : Channel
file : File
mode : String

The file is the name of the file to be opened. The mode is a combination
of the following characters.

r Open the file for reading; it is an error if the file does not exist.

omake (1) 70 Version: 0.9.6.6, November 5, 2005

23.3 close 23 IO FUNCTIONS

w Open the file for writing; the file is created if it does not exist.

a Open the file in append mode; the file is created if it does not exist.

+ Open the file for both reading an writing.

t Open the file in text mode (default).

b Open the file in binary mode.

n Open the file in nonblocking mode.

x Fail if the file already exists.

Binary mode is not significant on Unix systems, where text and binary modes
are equivalent.

23.3 close

$(close channel...)
channel : Channel

The close function closes a file that was previously opened with fopen.

23.4 read

$(read channel, amount) : String
channel : InChannel
amount : Int

raises RuntimeException

The read function reads up to amount bytes from an input channel, and
returns the data that was read. If an end-of-file condition is reached, the function
raises a RuntimeException exception.

23.5 write

$(write channel, buffer, offset, amount) : String
channel : OutChannel
buffer : String
offset : Int
amount : Int

$(write channel, buffer) : String
channel : OutChannel
buffer : String

raises RuntimeException

omake (1) 71 Version: 0.9.6.6, November 5, 2005

23.6 lseek 23 IO FUNCTIONS

In the 4-argument form, the write function writes bytes to the output chan-
nel channel from the buffer, starting at position offset. Up to amount bytes
are written. The function returns the number of bytes that were written.

The 3-argument form is similar, but the offset is 0.
In the 2-argument form, the offset is 0, and the amount if the length of the

buffer.
If an end-of-file condition is reached, the function raises a RuntimeException

exception.

23.6 lseek

$(lseek channel, offset, whence) : Int
channel : Channel
offset : Int
whence : String

raises RuntimeException

The lseek function repositions the offset of the channel channel according
to the whence directive, as follows:

SEEK SET The offset is set to offset.

SEEK CUR The offset is set to its current position plus offset bytes.

SEEK END The offset is set to the size of the file plus offset bytes.

The lseek function returns the new position in the file.

23.7 rewind

rewind(channel...)
channel : Channel

The rewind function set the current file position to the beginning of the file.

23.8 tell

$(tell channel...) : Int...
channel : Channel

raises RuntimeException

The tell function returns the current position of the channel.

23.9 flush

$(flush channel...)
channel : OutChannel

The flush function can be used only on files that are open for writing. It
flushes all pending data to the file.

omake (1) 72 Version: 0.9.6.6, November 5, 2005

23.10 dup 23 IO FUNCTIONS

23.10 dup

$(dup channel) : Channel
channel : Channel

raises RuntimeException

The dup function returns a new channel referencing the same file as the
argument.

23.11 dup2

dup2(channel1, channel2)
channel1 : Channel
channel2 : Channel

raises RuntimeException

The dup2 function causes channel2 to refer to the same file as channel1.

23.12 set-nonblock

set-nonblock-mode(mode, channel...)
channel : Channel
mode : String

The set-nonblock-mode function sets the nonblocking flag on the given
channel. When IO is performed on the channel, and the operation cannot be
completed immediately, the operations raises a RuntimeException.

23.13 set-close-on-exec-mode

set-close-on-exec-mode(mode, channel...)
channel : Channel
mode : String

raises RuntimeException

The set-close-on-exec-mode function sets the close-on-exec flags for the
given channels. If the close-on-exec flag is set, the channel is not inherited by
child processes. Otherwise it is.

23.14 pipe

$(pipe) : Pipe
raises RuntimeException

The pipe function creates a Pipe object, which has two fields. The read
field is a channel that is opened for reading, and the write field is a channel
that is opened for writing.

omake (1) 73 Version: 0.9.6.6, November 5, 2005

23.15 mkfifo 23 IO FUNCTIONS

23.15 mkfifo

mkfifo(mode, node...)
mode : Int
node : Node

The mkfifo function creates a named pipe.

23.16 select

$(select rfd..., wfd..., wfd..., timeout) : Select
rfd : InChannel
wfd : OutChannel
efd : Channel
timeout : float

raises RuntimeException

The select function polls for possible IO on a set of channels. The rfd are
a sequence of channels for reading, wfd are a sequence of channels for writing,
and efd are a sequence of channels to poll for error conditions. The timeout
specifies the maximum amount of time to wait for events.

On successful return, select returns a Select object, which has the follow-
ing fields:

read An array of channels available for reading.

write An array of channels available for writing.

error An array of channels on which an error has occurred.

23.17 lockf

lockf(channel, command, len)
channel : Channel
command : String
len : Int

raises RuntimeException

The lockf function places a lock on a region of the channel. The region
starts at the current position and extends for len bytes.

The possible values for command are the following.

F ULOCK Unlock a region.

F LOCK Lock a region for writing; block if already locked.

F TLOCK Lock a region for writing; fail if already locked.

F TEST Test a region for other locks.

F RLOCK Lock a region for reading; block if already locked.

F TRLOCK Lock a region for reading; fail is already locked.

omake (1) 74 Version: 0.9.6.6, November 5, 2005

23.18 InetAddr 23 IO FUNCTIONS

23.18 InetAddr

The InetAddr object describes an Internet address. It contains the following
fields.

addr String: the Internet address.

port Int: the port number.

23.19 Host

A Host object contains the following fields.

name String: the name of the host.

aliases String Array: other names by which the host is known.

addrtype String: the preferred socket domain.

addrs InetAddr Array: an array of Internet addresses belonging to the host.

23.20 gethostbyname

$(gethostbyname host...) : Host...
host : String

raises RuntimeException

The gethostbyname function returns a Host object for the specified host.
The host may specify a domain name or an Internet address.

23.21 Protocol

The Protocol object represents a protocol entry. It has the following fields.

name String: the canonical name of the protocol.

aliases String Array: aliases for the protocol.

proto Int: the protocol number.

23.22 getprotobyname

$(getprotobyname name...) : Protocol...
name : Int or String

raises RuntimeException

The getprotobyname function returns a Protocol object for the specified
protocol. The name may be a protocol name, or a protocol number.

omake (1) 75 Version: 0.9.6.6, November 5, 2005

23.23 Service 23 IO FUNCTIONS

23.23 Service

The Service object represents a network service. It has the following fields.

name String: the name of the service.

aliases String Array: aliases for the service.

port Int: the port number of the service.

proto Protocol: the protocol for the service.

23.24 getservbyname

$(getservbyname service...) : Service...
service : String or Int

raises RuntimeException

The getservbyname function gets the information for a network service. The
service may be specified as a service name or number.

23.25 socket

$(socket domain, type, protocol) : Channel
domain : String
type : String
protocol : String

raises RuntimeException

The socket function creates an unbound socket.
The possible values for the arguments are as follows.
The domain may have the following values.

PF UNIX or unix Unix domain, available only on Unix systems.

PF INET or inet Internet domain, IPv4.

PF INET6 or inet6 Internet domain, IPv6.

The type may have the following values.

SOCK STREAM or stream Stream socket.

SOCK DGRAM or dgram Datagram socket.

SOCK RAW or raw Raw socket.

SOCK SEQPACKET or seqpacket Sequenced packets socket

The protocol is an Int or String that specifies a protocol in the protocols
database.

omake (1) 76 Version: 0.9.6.6, November 5, 2005

23.26 bind 23 IO FUNCTIONS

23.26 bind

bind(socket, host, port)
socket : InOutChannel
host : String
port : Int

bind(socket, file)
socket : InOutChannel
file : File

raise RuntimeException

The bind function binds a socket to an address.
The 3-argument form specifies an Internet connection, the host specifies a

host name or IP address, and the port is a port number.
The 2-argument form is for Unix sockets. The file specifies the filename

for the address.

23.27 listen

listen(socket, requests)
socket : InOutChannel
requests : Int

raises RuntimeException

The listen function sets up the socket for receiving up to requests number
of pending connection requests.

23.28 accept

$(accept socket) : InOutChannel
socket : InOutChannel

raises RuntimeException

The accept function accepts a connection on a socket.

23.29 connect

connect(socket, addr, port)
socket : InOutChannel
addr : String
port : int

connect(socket, name)
socket : InOutChannel
name : File

raise RuntimeException

omake (1) 77 Version: 0.9.6.6, November 5, 2005

23.30 getchar 23 IO FUNCTIONS

The connect function connects a socket to a remote address.
The 3-argument form specifies an Internet connection. The addr argument

is the Internet address of the remote host, specified as a domain name or IP
address. The port argument is the port number.

The 2-argument form is for Unix sockets. The name argument is the filename
of the socket.

23.30 getchar

$(getc) : String
$(getc file) : String

file : InChannel or File
raises RuntimeException

The getc function returns the next character of a file. If the argument is
not specified, stdin is used as input. If the end of file has been reached, the
function returns false.

23.31 gets

$(gets) : String
$(gets channel) : String

channel : InChannel or File
raises RuntimeException

The gets function returns the next line from a file. The function returns the
empty string if the end of file has been reached. The line terminator is removed.

23.32 fgets

$(fgets) : String
$(fgets channel) : String

channel : InChannel or File
raises RuntimeException

The fgets function returns the next line from a file that has been opened
for reading with fopen. The function returns the empty string if the end of
file has been reached. The returned string is returned as literal data. The line
terminator is not removed.

23.33 Printing functions

Output is printed with the print and println functions. The println function
adds a terminating newline to the value being printed, the print function does
not.

omake (1) 78 Version: 0.9.6.6, November 5, 2005

23.34 Value printing functions 24 HIGHER-LEVEL IO FUNCTIONS

fprint(<file>, <string>)
print(<string>)
eprint(<string>)
fprintln(<file>, <string>)
println(<string>)
eprintln(<string>)

The fprint functions print to a file that has been previously opened with
fopen. The print functions print to the standard output channel, and the
eprint functions print to the standard error channel.

23.34 Value printing functions

Values can be printed with the printv and printvln functions. The printvln
function adds a terminating newline to the value being printed, the printv
function does not.

fprintv(<file>, <string>)
printv(<string>)
eprintv(<string>)
fprintvln(<file>, <string>)
printvln(<string>)
eprintvln(<string>)

The fprintv functions print to a file that has been previously opened with
fopen. The printv functions print to the standard output channel, and the
eprintv functions print to the standard error channel.

24 Higher-level IO functions

24.1 Regular expressions

Many of the higher-level functions use regular expressions. Regular expressions
are defined by strings with syntax nearly identical to awk(1).

Strings may contain the following character constants.

• \\ : a literal backslash.

• \a : the alert character ^G.

• \b : the backspace character ^H.

• \f : the formfeed character ^L.

• \n : the newline character ^J.

• \r : the carriage return character ^M.

• \t : the tab character ^I.

omake (1) 79 Version: 0.9.6.6, November 5, 2005

24.1 Regular expressions 24 HIGHER-LEVEL IO FUNCTIONS

• \v : the vertical tab character.

• \xhh... : the character represented by the string of hexadecimal digits
h. All valid hexadecimal digits following the sequence are considered to
be part of the sequence.

• \ddd : the character represented by 1, 2, or 3 octal digits.

Regular expressions are defined using the special characters .\^$[(){}*?+.

• c : matches the literal character c if c is not a special character.

• \c : matches the literal character c, even if c is a special character.

• . : matches any character, including newline.

• ^ : matches the beginning of a line.

• $: matches the end of line.

• [abc...] : matches any of the characters abc...

• [^abc...] : matches any character except abc...

• r1|r2 : matches either r1 or r2.

• r1r2 : matches r1 and then r2.

• r+ : matches one or more occurrences of r.

• r* : matches zero or more occurrences of r.

• r? : matches zero or one occurrence of r.

• (r) : parentheses are used for grouping; matches r.

• \(r\) : also defines grouping, but the expression matched within the
parentheses is available to the output processor through one of the vari-
ables $1, $2, ...

• r{n} : matches exactly n occurrences of r.

• r{n,} : matches n or more occurrences of r.

• r{n,m} : matches at least n occurrences of r, and no more than m occur-
rences.

• \y: matches the empty string at either the beginning or end of a word.

• \B: matches the empty string within a word.

• \<: matches the empty string at the beginning of a word.

• \>: matches the empty string at the end of a word.

omake (1) 80 Version: 0.9.6.6, November 5, 2005

24.2 cat 24 HIGHER-LEVEL IO FUNCTIONS

• \w: matches any character in a word.

• \W: matches any character that does not occur within a word.

• \‘: matches the empty string at the beginning of a file.

• \’: matches the empty string at the end of a file.

Character classes can be used to specify character sequences abstractly.
Some of these sequences can change depending on your LOCALE.

• [:alnum:] Alphanumeric characters.

• [:alpha:] Alphabetic characters.

• [:lower:] Lowercase alphabetic characters.

• [:upper:] Uppercase alphabetic characters.

• [:cntrl:] Control characters.

• [:digit:] Numeric characters.

• [:xdigit:] Numeric and hexadecimal characters.

• [:graph:] Characters that are printable and visible.

• [:print:] Characters that are printable, whether they are visible or not.

• [:punct:] Punctuation characters.

• [:blank:] Space or tab characters.

• [:space:] Whitespace characters.

24.2 cat

cat(files) : Sequence
files : File or InChannel Sequence

The cat function concatenates the output from multiple files and returns it
as a string.

24.3 grep

grep(pattern) : String # input from stdin, default options
pattern : String

grep(pattern, files) : String # default options
pattern : String
files : File Sequence

grep(options, pattern, files) : String
options : String
pattern : String
files : File Sequence

omake (1) 81 Version: 0.9.6.6, November 5, 2005

24.4 awk 24 HIGHER-LEVEL IO FUNCTIONS

The grep function searches for occurrences of a regular expression pattern
in a set of files, and prints lines that match. This is like a highly-simplified
version of grep(1).

The options are:

q If specified, the output from grep is not displayed.

n If specified, output lines include the filename.

The pattern is a regular expression.
If successful (grep found a match), the function returns true. Otherwise, it

returns false.

24.4 awk

awk(input-files)
case pattern1:

body1
case pattern2:

body2
...
default:

bodyd

The awk function provides input processing similar to awk(1), but more
limited. The function takes filename arguments. If called with no arguments,
the input is taken from stdin. If arguments are provided, each specifies an
InChannel, or the name of a file for input. Output is always to stdout.

The variables RS and FS define record and field separators as regular ex-
pressions. The default value of RS is the regular expression \r|\n|\r\n. The
default value of FS is the regular expression [\t]+.

The awk function operates by reading the input one record at a time, and
processing it according to the following algorithm.

For each line, the record is first split into fields using the field separator
FS, and the fields are bound to the variables $1, $2, The variable $0 is
defined to be the entire line, and $* is an array of all the field values. The $(NF)
variable is defined to be the number of fields.

Next, the cases are evaluated in order. For each case, if the regular expression
pattern_i matches the record $0, then body_i is evaluated. If the body ends
in an export, the state is passed to the next clause. Otherwise the value is
discarded. If the regular expression contains \(r\) expression, those expression
override the fields $1, $2,

For example, here is an awk function to print the text between two delimiters
\begin{<name>} and \end{<name>}, where the <name> must belong to a set
passed as an argument to the filter function.

filter(names) =

omake (1) 82 Version: 0.9.6.6, November 5, 2005

24.5 fsubst 24 HIGHER-LEVEL IO FUNCTIONS

print = false

awk(Awk.in)
case $"^\\end\{\([:alpha:]+\)\}"

if $(mem $1, $(names))
print = false
export

export
default

if $(print)
println($0)

case $"^\\begin\{\([:alpha:]+\)\}"
print = $(mem $1, $(names))
export

Note, if you want to redirect the output to a file, the easiest way is to
redefine the stdout variable. The stdout variable is scoped the same way as
other variables, so this definition does not affect the meaning of stdout outside
the filter function.

filter(names) =
stdout = $(fopen file.out, w)
awk(Awk.in)

...
close(stdout)

24.5 fsubst

fsubst(files)
case pattern1 [options]

body1
case pattern2 [options]

body2
...
default

bodyd

The fsubst function provides a sed(1)-like substitution function. Similar to
awk, if fsubst is called with no arguments, the input is taken from stdin. If
arguments are provided, each specifies an InChannel, or the name of a file for
input.

The RS variable defines a regular expression that determines a record sepa-
rator, The default value of RS is the regular expression \r|\n|\r\n.

The fsubst function reads the file one record at a time.
For each record, the cases are evaluated in order. Each case defines a substi-

tution from a substring matching the pattern to replacement text defined by
the body.

omake (1) 83 Version: 0.9.6.6, November 5, 2005

24.6 Lexer 24 HIGHER-LEVEL IO FUNCTIONS

Currently, there is only one option: g. If specified, each clause specifies
a global replacement, and all instances of the pattern define a substitution.
Otherwise, the substitution is applied only once.

Output can be redirected by redefining the stdout variable.
For example, the following program replaces all occurrences of an expression

word. with its capitalized form.

section
stdout = $(fopen Subst.out, w)
fsubst(Subst.in)
case $"\<\([[:alnum:]]+\)\." g

value $(capitalize $1).
close(stdout)

24.6 Lexer

The Lexer object defines a facility for lexical analysis, similar to the lex (1) and
flex (1) programs.

In omake, lexical analyzers can be constructed dynamically by extending
the Lexer class. A lexer definition consists of a set of directives specified with
method calls, and set of clauses specified as rules.

For example, consider the following lexer definition, which is intended for
lexical analysis of simple arithmetic expressions for a desktop calculator.

lexer1. =
extends $(Lexer)

other: .
eprintln(Illegal character: $*)
lex()

white: $"[[:space:]]+"
lex()

op: $"[-+*/()]"
switch $*
case +

Token.unit($(loc), plus)
case -

Token.unit($(loc), minus)
case *

Token.unit($(loc), mul)
case /

Token.unit($(loc), div)
case $"("

Token.unit($(loc), lparen)

omake (1) 84 Version: 0.9.6.6, November 5, 2005

24.7 Lexer matching 24 HIGHER-LEVEL IO FUNCTIONS

case $")"
Token.unit($(loc), rparen)

number: $"[[:digit:]]+"
Token.pair($(loc), exp, $(int $*))

eof: $"\’"
Token.unit($(loc), eof)

This program defines an object lexer1 the extends the Lexer object, which
defines lexing environment.

The remainder of the definition consists of a set of clauses, each with a
method name before the colon; a regular expression after the colon; and in this
case, a body. The body is optional, if it is not specified, the method with the
given name should already exist in the lexer definition.

NB The clause that matches the longest prefix of the input is selected. If
two clauses match the same input prefix, then the last one is selected. This is
unlike most standard lexers, but makes more sense for extensible grammars.

The first clause matches any input that is not matched by the other clauses.
In this case, an error message is printed for any unknown character, and the
input is skipped. Note that this clause is selected only if no other clause matches.

The second clause is responsible for ignoring white space. If whitespace is
found, it is ignored, and the lexer is called recursively.

The third clause is responsible for the arithmetic operators. It makes use
of the Token object, which defines three fields: a loc field that represents the
source location; a name; and a value.

The lexer defines the loc variable to be the location of the current lexeme
in each of the method bodies, so we can use that value to create the tokens.

The Token.unit($(loc), name) method constructs a new Token object
with the given name, and a default value.

The number clause matches nonnegative integer constants. The Token.pair($(loc), name, value)
constructs a token with the given name and value.

Lexer object operate on InChannel objects. The method lexer1.lex-channel(channel)
reads the next token from the channel argument.

24.7 Lexer matching

During lexical analysis, clauses are selected by longest match. That is, the clause
that matches the longest sequence of input characters is chosen for evaluation.
If no clause matches, the lexer raises a RuntimeException. If more than one
clause matches the same amount of input, the first one is chosen for evaluation.

24.8 Extending lexer definitions

Suppose we wish to augment the lexer example so that it ignores comments.
We will define comments as any text that begins with the string (*, ends with

omake (1) 85 Version: 0.9.6.6, November 5, 2005

24.9 Threading the lexer object 24 HIGHER-LEVEL IO FUNCTIONS

*), and comments may be nested.
One convenient way to do this is to define a separate lexer just to skip

comments.

lex-comment. =
extends $(Lexer)

level = 0

other: .
lex()

term: $"[*][)]"
if $(not $(eq $(level), 0))

level = $(sub $(level), 1)
lex()

next: $"[(][*]"
level = $(add $(level), 1)
lex()

eof: $"\’"
eprintln(Unterminated comment)

This lexer contains a field level that keeps track of the nesting level. On
encountering a (* string, it increments the level, and for *), it decrements the
level if nonzero, and continues.

Next, we need to modify our previous lexer to skip comments. We can do
this by extending the lexer object lexer1 that we just created.

lexer1. +=
comment: $"[(][*]"

lex-comment.lex-channel($(channel))
lex()

The body for the comment clause calls the lex-comment lexer when a com-
ment is encountered, and continues lexing when that lexer returns.

24.9 Threading the lexer object

Clause bodies may also end with an export directive. In this case the lexer
object itself is used as the returned token. If used with the Parser object
below, the lexer should define the loc, name and value fields in each export
clause. Each time the Parser calls the lexer, it calls it with the lexer returned
from the previous lex invocation.

omake (1) 86 Version: 0.9.6.6, November 5, 2005

24.10 Parser 24 HIGHER-LEVEL IO FUNCTIONS

24.10 Parser

The Parser object provides a facility for syntactic analysis based on context-free
grammars.

Parser objects are specified as a sequence of directives, specified with method
calls; and productions, specified as rules.

For example, let’s finish building the desktop calculator started in the Lexer
example.

parser1. =
extends $(Parser)

#
Use the main lexer
#
lexer = $(lexer1)

#
Precedences, in ascending order
#
left(plus minus)
left(mul div)
right(uminus)

#
A program
#
start(prog)

prog: exp eof
return $1

#
Simple arithmetic expressions
#
exp: minus exp :prec: uminus

neg($2)

exp: exp plus exp
add($1, $3)

exp: exp minus exp
sub($1, $3)

exp: exp mul exp
mul($1, $3)

omake (1) 87 Version: 0.9.6.6, November 5, 2005

24.11 Calling the parser 24 HIGHER-LEVEL IO FUNCTIONS

exp: exp div exp
div($1, $3)

exp: lparen exp rparen
return $2

Parsers are defined as extensions of the Parser class. A Parser object must
have a lexer field. The lexer is not required to be a Lexer object, but it
must provide a lexer.lex() method that returns a token object with name
and value fields. For this example, we use the lexer1 object that we defined
previously.

The next step is to define precedences for the terminal symbols. The prece-
dences are defined with the left, right, and nonassoc methods in order of
increasing precedence.

The grammar must have at least one start symbol, declared with the start
method.

Next, the productions in the grammar are listed as rules. The name of the
production is listed before the colon, and a sequence of variables is listed to the
right of the colon. The body is a semantic action to be evaluated when the
production is recognized as part of the input.

In this example, these are the productions for the arithmetic expressions
recognized by the desktop calculator. The semantic action performs the cal-
culation. The variables $1, $2, ... correspond to the values associated with
each of the variables on the right-hand-side of the production.

24.11 Calling the parser

The parser is called with the $(parser1.parse-channel start, channel) or
$(parser1.parse-file start, file) functions. The start argument is the
start symbol, and the channel or file is the input to the parser.

24.12 Parsing control

The parser generator generates a pushdown automation based on LALR(1) ta-
bles. As usual, if the grammar is ambiguous, this may generate shift/reduce or
reduce/reduce conflicts. These conflicts are printed to standard output when
the automaton is generated.

By default, the automaton is not constructed until the parser is first used.
The build(debug) method forces the construction of the automaton. While

not required, it is wise to finish each complete parser with a call to the build(debug)
method. If the debug variable is set, this also prints with parser table together
with any conflicts.

The loc variable is defined within action bodies, and represents the input
range for all tokens on the right-hand-side of the production.

omake (1) 88 Version: 0.9.6.6, November 5, 2005

24.13 Extending parsers 25 SHELL FUNCTIONS

24.13 Extending parsers

Parsers may also be extended by inheritance. For example, let’s extend the
grammar so that it also recognizes the << and >> shift operations.

First, we extend the lexer so that it recognizes these tokens. This time, we
choose to leave lexer1 intact, instead of using the += operator.

lexer2. =
extends $(lexer1)

lsl: $"<<"
Token.unit($(loc), lsl)

asr: $">>"
Token.unit($(loc), asr)

Next, we extend the parser to handle these new operators. We intend that
the bitwise operators have lower precedence than the other arithmetic operators.
The two-argument form of the left method accomplishes this.

parser2. =
extends $(parser1)

left(plus, lsl lsr asr)

lexer = $(lexer2)

exp: exp lsl exp
lsl($1, $3)

exp: exp asr exp
asr($1, $3)

In this case, we use the new lexer lexer2, and we add productions for the
new shift operations.

24.14 gettimeofday

$(gettimeofday) : Float

The gettimeofday function returns the time of day in seconds since January
1, 1970.

25 Shell functions

25.1 echo

The echo function prints a string.
$(echo <args>) echo <args>

omake (1) 89 Version: 0.9.6.6, November 5, 2005

25.2 jobs 25 SHELL FUNCTIONS

25.2 jobs

The jobs function prints a list of jobs.
jobs

25.3 cd

The cd function changes the current directory.

cd(dir)
dir : Dir

The cd function also supports a 2-argument form:

$(cd dir, e)
dir : Dir
e : expression

In the two-argument form, expression e is evaluated in the directory dir.
The current directory is not changed otherwise.

The behavior of the cd function can be changed with the CDPATH variable,
which specifies a search path for directories. This is normally useful only in the
osh command interpreter.

CDPATH : Dir Sequence

For example, the following will change directory to the first directory ./foo,
~/dir1/foo, ~/dir2/foo.

CDPATH[] =
.
$(HOME)/dir1
$(HOME)/dir2

cd foo

25.4 bg

The bg function places a job in the background.
bg <pid...>

25.5 fg

The fg function brings a job to the foreground.
fg <pid...>

25.6 stop

The stop function suspends a job.
stop <pid...>

omake (1) 90 Version: 0.9.6.6, November 5, 2005

25.7 wait 26 PERVASIVES

25.7 wait

The wait function waits for a job to finish. If no process identifiers are given,
the shell waits for all jobs to complete.

wait <pid...>

25.8 kill

The kill function signals a job.
kill [signal] <pid...>

25.9 history

$(history-index) : Int
$(history) : String Sequence
history-file : File
history-length : Int

The history variables manage the command-line history in osh. They have
no effect in omake.

The history-index variable is the current index into the command-line
history. The history variable is the current command-line history.

The history-file variable can be redefined if you want the command-line
history to be saved. The default value is ~/.omake/osh_history.

The history-length variable can be redefined to specify the maximum
number of lines in the history that you want saved. The default value is 100.

26 Pervasives

Pervasives defines the objects that are defined in all programs. The following
objects are defined.

26.1 Object

Parent objects: none.
The Object object is the root object. Every class is a subclass of Object.
It provides the following fields:

• $(o.object-length): the number of fields and methods in the object.

• $(o.object-mem <var>): returns true iff the <var> is a field or method
of the object.

• $(o.object-add <var>, <value>): adds the field to the object, return-
ing a new object.

• $(o.object-find <var>): fetches the field or method from the object; it
is equivalent to $(o.<var>), but the variable can be non-constant.

omake (1) 91 Version: 0.9.6.6, November 5, 2005

26.2 Map 26 PERVASIVES

• $(o.object-map <fun>): maps a function over the object. The function
should take two arguments; the first is a field name, the second is the
value of that field. The result is a new object constructed from the values
returned by the function.

• o.object-foreach: the foreach form is equivalent to map, but with al-
tered syntax.

o.foreach(<var1>, <var2>)
<body>

For example, the following function prints all the fields of an object o.

PrintObject(o) =
o.foreach(v, x)

println($(v) = $(x))

The export form is valid in a foreach body. The following function
collects just the field names of an object.

FieldNames(o) =
names =
o.foreach(v, x)

names += $(v)
export

return $(names)

26.2 Map

Parent objects: Object.
A Map object is a dictionary from values to values. The <key> values are

restricted to simple values: integers, floating-point numbers, strings, files, di-
rectories, and arrays of simple values.

The Map object provides the following methods.

• $(o.mem <key>): returns true iff the <key> is defined in the map.

• $(o.add <key>, <value>): adds the field to the map, returning a new
map.

• $(o.find <key>): fetches the field from the map.

• $(o.map <fun>): maps a function over the map. The function should
take two arguments; the first is a field name, the second is the value of
that field. The result is a new object constructed from the values returned
by the function.

omake (1) 92 Version: 0.9.6.6, November 5, 2005

26.3 Number 26 PERVASIVES

• o.foreach: the foreach form is equivalent to map, but with altered syn-
tax.

o.foreach(<var1>, <var2>)
<body>

For example, the following function prints all the fields of an object o.

PrintObject(o) =
o.foreach(v, x)

println($(v) = $(x))

The export form is valid in a foreach body. The following function
collects just the field names of the map.

FieldNames(o) =
names =
o.foreach(v, x)

names += $(v)
export

return $(names)

There is also simpler syntax when the key is a string. The table can be
defined using definitions with the form $|key| (the number of pipe symbols |
is allowed to vary).

$|key 1| = value1
$||key1|key2|| = value2 # The key is key1|key2
X = $|key 1| # Define X to be the value of field $|key 1|

The usual modifiers are also allowed. The expression $‘|key| represents
lazy evaluation of the key, and $,|key| is normal evaluation.

26.3 Number

Parent objects: Object.
The Number object is the parent object for integers and floating-point num-

bers.

26.4 Int

Parent objects: Number.
The Int object represents integer values.

omake (1) 93 Version: 0.9.6.6, November 5, 2005

26.5 Float 26 PERVASIVES

26.5 Float

Parent objects: Number.
The Float object represents floating-point numbers.

26.6 Sequence

Parent objects: Object.
The Sequence object represents a generic object containing sequential ele-

ments. It provides the following methods.

• $(s.length): the number of elements in the sequence.

• $(s.map <fun>): maps a function over the fields in the sequence. The
function should take two arguments; the first is a field name, the second
is the value of that field. The result is a new sequence constructed from
the values returned by the function.

• s.foreach: the foreach form is equivalent to map, but with altered syn-
tax.

s.foreach(<var>)
<body>

For example, the following function prints all the elements of the sequence.

PrintSequence(s) =
s.foreach(x)

println(Elem = $(x))

The export form is valid in a foreach body. The following function
counts the number of zeros in the sequence.

Zeros(s) =
count = $(int 0)
s.foreach(v)

if $(equal $(v), 0)
count = $(add $(count), 1)
export

export
return $(count)

omake (1) 94 Version: 0.9.6.6, November 5, 2005

26.7 Array 26 PERVASIVES

26.7 Array

Parent objects: Sequence.
The Array is a random-access sequence. It provides the following additional

methods.

• $(s.nth <i>): returns element i of the sequence.

• $(s.rev <i>): returns the reversed sequence.

26.8 String

Parent objects: Array.

26.9 Fun

Parent objects: Object.
The Fun object provides the following methods.

• $(f.arity): the arity if the function.

26.10 Rule

Parent objects: Object.
The Rule object represents a build rule. It does not currently have any

methods.

26.11 Target

Parent object: Object.
The Target object contains information collected for a specific target file.

• target: the target file.

• effects: the files that may be modified by a side-effect when this target
is built.

• scanner_deps: static dependencies that must be built before this target
can be scanned.

• static-deps: statically-defined build dependencies of this target.

• build-deps: all the build dependencies for the target, including static
and scanned dependencies.

• build-values: all the value dependencies associated with the build.

• build-commands: the commands to build the target.

The object supports the following methods.

omake (1) 95 Version: 0.9.6.6, November 5, 2005

26.12 Node 26 PERVASIVES

• find(file): returns a Target object for the given file. Raises a RuntimeException
if the specified target is not part of the project.

• find-optional(file): returns a Target object for the given file, or
false if the file is not part of the project.

NOTE: the information for a target is constructed dynamically, so it is pos-
sible that the Target object for a node will contain different values in different
contexts. The easiest way to make sure that the Target information is complete
is to compute it within a rule body, where the rule depends on the target file,
or the dependencies of the target file.

26.12 Node

Parent objects: Object.
The Node object is the parent object for files and directories. It supports

the following operations.

• $(node.stat): returns a stat object for the file. If the file is a symbolic
link, the stat information is for the destination of the link, not the link
itself.

• $(node.lstat): returns a stat object for the file or symbolic link.

• $(node.unlink): removes the file.

• $(node.rename <file>): renames the file.

• $(node.link <file>): creates a hard link <dst> to this file.

• $(node.symlink <file>): create a symbolic link <dst> to this file.

• $(node.chmod <perm>): change the permission of this file.

• $(node.chown <uid>, <gid>): change the owner and group id of this
file.

26.13 File

Parent objects: Node.
The file object represents the name of a file.

26.14 Dir

Parent objects: Node.
The Dir object represents the name of a directory.

omake (1) 96 Version: 0.9.6.6, November 5, 2005

26.15 Channel 26 PERVASIVES

26.15 Channel

Parent objects: Object.
A Channel is a generic IO channel. It provides the following methods.

• $(o.close): close the channel.

26.16 InChannel

Parent objects: Channel.
A InChannel is an input channel. The variable stdin is the standard input

channel.
It provides the following methods.

• $(InChannel.fopen <file>): open a new input channel.

26.17 OutChannel

Parent object: Channel.
A OutChannel is an output channel. The variables stdout and stderr are

the standard output and error channels.
It provides the following methods.

• $(OutChannel.fopen <file>): open a new output channel.

• $(OutChannel.append <file>): opens a new output channel, appending
to the file.

• $(c.flush): flush the output channel.

• $(c.print <string>): print a string to the channel.

• $(c.println <string>): print a string to the channel, followed by a line
terminator.

26.18 Location

Parent objects: Location.
The Location object represents a location in a file.

26.19 Position

Parent objects: Position.
The Position object represents a stack trace.

26.20 Exception

Parent objects: Object.
The Exception object is used as the base object for exceptions. It has no

fields.

omake (1) 97 Version: 0.9.6.6, November 5, 2005

26.21 RuntimeException 26 PERVASIVES

26.21 RuntimeException

Parent objects: Exception.
The RuntimeException object represents an exception from the runtime

system. It has the following fields.

• position: a string representing the location where the exception was
raised.

• message: a string containing the exception message.

26.22 Shell

Parent objects: Object.
The Shell object contains the collection of builtin functions available as

shell commands.
You can define aliases by extending this object with additional methods. All

methods in this class are called with one argument: a single array containing
an argument list.

• echo

The echo function prints its arguments to the standard output channel.

• jobs

The jobs method prints the status of currently running commands.

• cd

The cd function changes the current directory. Note that the current
directory follows the usual scoping rules. For example, the following pro-
gram lists the files in the foo directory, but the current directory is not
changed.

section
echo Listing files in the foo directory...
cd foo
ls

echo Listing files in the current directory...
ls

• bg

The bg method places a job in the background. The job is resumed if it
has been suspended.

• fg

The fg method brings a job to the foreground. The job is resumed if it
has been suspended.

omake (1) 98 Version: 0.9.6.6, November 5, 2005

26.22 Shell 26 PERVASIVES

• stop

The stop method suspends a running job.

• wait

The wait function waits for a running job to terminate. It is not possible
to wait for a suspended job.

The job is not brought to the foreground. If the wait is interrupted, the
job continues to run in the background.

• kill

The kill function signal a job.

kill [signal] <pid...>.

The signals are either numeric, or symbolic. The symbolic signals are
named as follows.

ABRT, ALRM, HUP, ILL, KILL, QUIT, SEGV, TERM, USR1, USR2,
CHLD, STOP, TSTP, TTIN, TTOU, VTALRM, PROF.

• exit

The exit function terminates the current session.

• which, where

See the documentation for the corresponding functions.

• rehash

Reset the search path.

• history

Print the current command-line history.

• Win32 functions.

Win32 doesn’t provide very many programs for scripting, except for the
functions that are builtin to the DOS cmd.exe. The following functions
are defined on Win32 and only on Win32. On other systems, it is expected
that these programs already exist.

– grep

grep [-q] [-n] pattern files...

The grep function calls the omake grep function.

By default, omake uses internal versions of the following commands: cp,
rm, mkdir, chmod, test, find. If you really want to use the standard
system versions of these commands, set the USE_SYSTEM_COMMANDS as one
of the first definitions in your OMakeroot file.

omake (1) 99 Version: 0.9.6.6, November 5, 2005

26.22 Shell 26 PERVASIVES

– mkdir

mkdir [-m <mode>] [-p] files

The mkdir function is used to create directories. The -verb+-m+
option can be used to specify the permission mode of the created
directory. If the -p option is specified, the full path is created.

– cp

– mv

cp [-f] [-i] [-v] src dst
cp [-f] [-i] [-v] files dst
mv [-f] [-i] [-v] src dst
mv [-f] [-i] [-v] files dst

The cp function copies a src file to a dst file, overwriting it if it
already exists. If more than one source file is specified, the final file
must be a directory, and the source files are copied into the directory.

-f Copy files forcibly, do not prompt.
-i Prompt before removing destination files.
-v Explain what is happening.

– rm

rm [-f] [-i] [-v] [-r] files
rmdir [-f] [-i] [-v] [-r] dirs

The rm function removes a set of files. No warnings are issued if the
files do not exist, or if they cannot be removed.
Options:

-f Forcibly remove files, do not prompt.
-i Prompt before removal.
-v Explain what is happening.
-r Remove contents of directories recursively.

– chmod

chmod [-r] [-v] [-f] mode files

The chmod function changes the permissions on a set of files or di-
rectories. This function does nothing on Win32. The mode may
be specified as an octal number, or in symbolic form [ugoa]*[-
=][rwxXstugo]+. See the man page for chmod for details.
Options:

-r Change permissions of all files in a directory recursively.
-v Explain what is happening.
-f Continue on errors.

omake (1) 100 Version: 0.9.6.6, November 5, 2005

27 BUILD FUNCTIONS

– test

test \emph{expression}
\verb+[+ \emph{expression} +]+
\verb+[--help+
\verb+[--version+

See the documentation for the test function.

– find

find \emph{expression}

See the documentation for the find function.

27 Build functions

27.1 OMakeFlags

OMakeFlags(options)
options : String

The OMakeFlags function is used to set omake options from within OMakefiles.
The options have exactly the same format as options on the command line.

For example, the following code displays the progress bar unless the VERBOSE
environment variable is defined.

if $(not $(defined-env VERBOSE))
OMakeFlags(-S --progress)
export

27.2 OMakeVersion

OMakeVersion(version1)
OMakeVersion(version1, version2)

version1, version2 : String

The OMakeVersion function is used for version checking in OMakefiles. It
takes one or two arguments.

In the one argument form, if the omake version number is less than <version1>,
then an exception is raised. In the two argument form, the version must lie be-
tween version1 and version2.

27.3 cmp-versions

$(cmp-versions version1, version2)
version1, version2 : String

omake (1) 101 Version: 0.9.6.6, November 5, 2005

27.4 DefineCommandVars 28 THE OMAKEROOT FILE

The cmp-versions\ functions can be used to compare arbitrary version
strings. It returns 0 when the two version strings are equal, a negative num-
ber when the first string represents an earlier version, and a positive number
otherwise.

27.4 DefineCommandVars

DefineCommandVars()

The DefineCommandVars function redefines the variables passed on the com-
mandline. Variables definitions are passed on the command line in the form
name=value. This function is primarily for internal use by omake to define
these variables for the first time.

28 The OMakeroot file

The standard OMakeroot file defines the functions are rules for building standard
projects.

28.1 Variables

ROOT The root directory of the current project.

CWD The current working directory (the directory is set for each OMakefile
in the project).

EMPTY The empty string.

STDROOT The name of the standard installed OMakeroot file.

VERBOSE Whether certain commands should be verbose (false by default).

ABORT ON COMMAND ERRORS If set to true, the construction of a
target should be aborted whenever one of the commands to build it fail.
This defaults to true, and should normally be left that way.

SCANNER MODE This variable should be defined as one of four values
(defaults to enabled).

enabled Allow the use of default .SCANNER rules. Whenever a rule does
not specify a :scanner: dependency explicitly, try to find a .SCANNER
with the same target name.

disabled Never use default .SCANNER rules.
warning Allow the use of default .SCANNER rules, but print a warning

whenever one is selected.
error Do not allow the use of default .SCANNER rules. If a rule does not

specify a :scanner: dependency, and there is a default .SCANNER
rule, the build will terminate abnormally.

omake (1) 102 Version: 0.9.6.6, November 5, 2005

28.2 System variables 29 BUILDING C PROGRAMS

28.2 System variables

INSTALL The command to install a program (install on Unix, cp on Win32).

PATHSEP The normal path separator (: on Unix, ; on Win32).

DIRSEP The normal directory separator (/ on Unix, \ on Win32).

EXT LIB File suffix for a static library (default is .a on Unix, and .lib on
Win32).

EXT OBJ File suffix for an object file (default is .o on Unix, and .obj on
Win32).

EXT ASM File suffix for an assembly file (default is .s on Unix, and .asm on
Win32).

EXE File suffix for executables (default is empty for Unix, and .exe on Win32
and Cygwin).

29 Building C programs

omake provides extensive support for building C programs.

29.1 C configuration variables

The following variables can be redefined in your project.

CC The name of the C compiler (on Unix it defaults to gcc when gcc is present
and to cc otherwise; on Win32 defaults to cl /nologo).

CPP The name of the C preprocessor (defaults to cpp on Unix, and cl /E on
Win32).

CFLAGS Compilation flags to pass to the C compiler (default empty on Unix,
and /DWIN32 on Win32).

INCLUDES Additional directories that specify the search path to the C com-
piler (default is .). The directories are passed to the C compiler with the
-I option. The include path with -I prefixes is defined in the PREFIXED_INCLUDES
variable.

LIBS Additional libraries needed when building a program (default is empty).

AS The name of the assembler (defaults to as on Unix, and ml on Win32).

ASFLAGS Flags to pass to the assembler (default is empty on Unix, and
/c /coff on Win32).

AR The name of the program to create static libraries (defaults to ar cq on
Unix, and lib on Win32).

AROUT The option string that specifies the output file for AR.

omake (1) 103 Version: 0.9.6.6, November 5, 2005

29.2 StaticCLibrary 29 BUILDING C PROGRAMS

LD The name of the linker (defaults to ld on Unix, and cl on Win32).

LDFLAGS Options to pass to the linker (default is empty).

YACC The name of the yacc parser generator (default is yacc on Unix, empty
on Win32).

LEX The name of the lex lexer generator (default is lex on Unix, empty on
Win32).

29.2 StaticCLibrary

The StaticCLibrary builds a static library.
StaticCLibrary(<target>, <files>)
The <target> does not include the library suffix, and The <files> list does

not include the object suffix. These are obtained from the EXT_LIB and EXT_OBJ
variables.

The following command builds the library libfoo.a from the files a.o b.o c.o
on Unix, or the library libfoo.lib from the files a.obj b.obj c.obj on Win32.

StaticCLibrary(libfoo, a b c)

29.3 StaticCLibraryCopy

The StaticCLibraryCopy function copies the static library to an install loca-
tion.

StaticCLibraryCopy(<tag>, <dir>, <lib>)
The <tag> is the name of a target (typically a .PHONY target); the <dir>

is the installation directory, and <lib> is the library to be copied (without the
library suffix).

For example, the following code copies the library libfoo.a to the /usr/lib
directory.

.PHONY: install

StaticCLibraryCopy(install, /usr/lib, libfoo)

29.4 StaticCLibraryInstall

The StaticCLibraryInstall function builds a library, and sets the install lo-
cation in one step.

StaticCLibraryInstall(<tag>, <dir>, <libname>, <files>)

StaticCLibraryInstall(install, /usr/lib, libfoo, a b c)

omake (1) 104 Version: 0.9.6.6, November 5, 2005

29.5 StaticCObject, StaticCObjectCopy, StaticCObjectInstall29 BUILDING C PROGRAMS

29.5 StaticCObject, StaticCObjectCopy, StaticCObjectIn-
stall

These functions mirror the StaticCLibrary, StaticCLibraryCopy, and StaticCLibraryInstall
functions, but they build an object file (a .o file on Unix, and a .obj file on
Win32).

29.6 CProgram

The CProgram function builds a C program from a set of object files and libraries.
CProgram(<name>, <files>)
The <name> argument specifies the name of the program to be built; the

<files> argument specifies the files to be linked.
Additional options can be passed through the following variables.

CFLAGS Flags used by the C compiler during the link step.

LDFLAGS Flags to pass to the loader.

LIBS Additional libraries to be linked.

For example, the following code specifies that the program foo is to be
produced by linking the files bar.o and baz.o and libraries libfoo.a.

section
LIBS = libfoo$(EXT_LIB)
CProgram(foo, bar baz)

29.7 CProgramCopy

The CProgramCopy function copies a file to an install location.
CProgramCopy(<tag>, <dir>, <program>)

CProgramCopy(install, /usr/bin, foo)

29.8 CProgramInstall

The CProgramInstall function specifies a program to build, and a location to
install, simultaneously.

CProgramInstall(<tag>, <dir>, <name>, <files>)

section
LIBS = libfoo$(EXT_LIB)
CProgramInstall(install, /usr/bin, foo, bar baz)

omake (1) 105 Version: 0.9.6.6, November 5, 2005

30 BUILDING OCAML PROGRAMS

30 Building OCaml programs

30.1 Variables for OCaml programs

The following variables can be redefined in your project.

USE OCAMLFIND Whether to use the ocamlfind utility (default true\ if
ocamlfind exists, false\ otherwise).

OCAMLC The OCaml bytecode compiler (default ocamlc.opt if it exists and
USE_OCAMLFIND is not set, otherwise ocamlc).

OCAMLOPT The OCaml native-code compiler (default ocamlopt.opt if it
exists and USE_OCAMLFIND is not set, otherwise ocamlopt).

CAMLP4 The camlp4 preprocessor (default camlp4).

OCAMLLEX The OCaml lexer generator (default ocamllex).

OCAMLLEXFLAGS The flags to pass to ocamllex (default -q).

OCAMLYACC The OCaml parser generator (default ocamlyacc).

OCAMLDEP The OCaml dependency analyzer (default ocamldep).

OCAMLMKTOP The OCaml toploop compiler (default ocamlmktop).

OCAMLLINK The OCaml bytecode linker (default $(OCAMLC)).

OCAMLOPTLINK The OCaml native-code linker (default $(OCAMLOPT)).

OCAMLINCLUDES Search path to pass to the OCaml compilers (default
.). The search path with the -I prefix is defined by the PREFIXED_OCAMLINCLUDES
variable.

OCAMLFIND The ocamlfind utility (default ocamlfind if USE_OCAMLFIND
is set, otherwise empty).

OCAMLFINDFLAGS The flags to pass to ocamlfind (default empty, USE_OCAMLFIND
must be set).

OCAMLPACKS Package names to pass to ocamlfind (USE_OCAMLFIND must
be set).

BYTE ENABLED Flag indicating whether to use the bytecode compiler (de-
fault false).

NATIVE ENABLED Flag indicating whether to use the native-code com-
piler (default true). Both BYTE_ENABLED and NATIVE_ENABLED can be set
to true; at least one should be set to true.

omake (1) 106 Version: 0.9.6.6, November 5, 2005

30.2 OCaml command flags 30 BUILDING OCAML PROGRAMS

30.2 OCaml command flags

The following variables specify additional options to be passed to the OCaml
tools.

OCAMLDEPFLAGS Flags to pass to OCAMLDEP.

OCAMLPPFLAGS Flags to pass to CAMLP4.

OCAMLCFLAGS Flags to pass to the byte-code compiler (default -g).

OCAMLOPTFLAGS Flags to pass to the native-code compiler (default empty).

OCAMLFLAGS Flags to pass to either compiler (default -warn-error A).

OCAMLINCLUDES Include path (default .).

OCAML BYTE LINK FLAGS Flags to pass to the byte-code linker (de-
fault empty).

OCAML NATIVE LINK FLAGS Flags to pass to the native-code linker
(default empty).

OCAML LINK FLAGS Flags to pass to either linker.

30.3 Library variables

The following variables are used during linking.

OCAML LIBS Libraries to pass to the linker. These libraries become depen-
dencies of the link step.

OCAML OTHER LIBS Additional libraries to pass to the linker. These
libraries are not included as dependencies to the link step. Typical use is
for the OCaml standard libraries like unix or str.

OCAML CLIBS C libraries to pass to the linker.

OCAML LIB FLAGS Extra flags for the library.

30.4 OCamlLibrary

The OCamlLibrary function builds an OCaml library.
OCamlLibrary(<libname>, <files>)
The <libname> and <files> are listed without suffixes.
Additional variables used by the function:

ABORT ON DEPENDENCY ERRORS The linker requires that the files
to be listed in dependency order. If this variable is true, the order of
the files is determined by the command line, but omake will abort with
an error message if the order is illegal. Otherwise, the files are sorted
automatically.

omake (1) 107 Version: 0.9.6.6, November 5, 2005

30.5 OCamlLibraryCopy 30 BUILDING OCAML PROGRAMS

The following code builds the libfoo.cmxa library from the files foo.cmx
and bar.cmx (if NATIVE_ENABLED is set), and libfoo.cma from foo.cmo and
bar.cmo (if BYTE_ENABLED is set).

OCamlLibrary(libfoo, foo bar)

30.5 OCamlLibraryCopy

The OCamlLibraryCopy function copies a library to an install location.
OCamlLibraryCopy(<tag>, <libdir>, <libname>, <interface-files>)
The <interface-files> specify additional interface files to be copied if the

INSTALL_INTERFACES variable is true.

30.6 OCamlLibraryInstall

The OCamlLibraryInstall function builds a library and copies it to an install
location in one step.

OCamlLibraryInstall(<tag>, <libdir>, <libname>, <files>)

30.7 OCamlProgram

The OCamlProgram function builds an OCaml program.
OCamlProgram(<name>, <files>)
Additional variables used:

OCAML LIBS Additional libraries passed to the linker, without suffix. These
files become dependencies of the target program.

OCAML OTHER LIBS Additional libraries passed to the linker, without
suffix. These files do not become dependencies of the target program.

OCAML CLIBS C libraries to pass to the linker.

OCAML BYTE LINK FLAGS Flags to pass to the bytecode linker.

OCAML NATIVE LINK FLAGS Flags to pass to the native code linker.

OCAML LINK FLAGS Flags to pass to both linkers.

30.8 OCamlProgramCopy

The OCamlProgramCopy function copies an OCaml program to an install loca-
tion.

OCamlProgramCopy(<tag>, <bindir>, <name>)
Additional variables used:

NATIVE ENABLED If NATIVE_ENABLED is set, the native-code executable
is copied; otherwise the byte-code executable is copied.

omake (1) 108 Version: 0.9.6.6, November 5, 2005

30.9 OCamlProgramInstall 31 BUILDING LATEX PROGRAMS

30.9 OCamlProgramInstall

The OCamlProgramInstall function builds a programs and copies it to an install
location in one step.

OCamlProgramInstall(<tag>, <bindir>, <name>, <files>)

31 Building LATEX programs

31.1 Configuration variables

The following variables can be modified in your project.

LATEX The LATEX command (default latex).

TETEX2 ENABLED Flag indicating whether to use advanced LATEX op-
tions present in TeTeX v.2 (default value is determined the first time
omake reads LaTeX.src and depends on the version of LATEX you have
installed).

LATEXFLAGS The LATEX flags (defaults depend on the TETEX2_ENABLED
variable)

BIBTEX The BibTeX command (default bibtex).

MAKEINDEX The command to build an index (default makeindex).

DVIPS The .dvi to PostScript converter (default dvips).

DVIPSFLAGS Flags to pass to dvips (default -t letter).

DVIPDFM The .dvi to .pdf converter (default dvipdfm).

DVIPDFMFLAGS Flags to pass to dvipdfm (default -p letter).

PDFLATEX The .latex to .pdf converter (default pdflatex).

PDFLATEXFLAGS Flags to pass to pdflatex (default is empty).

USEPDFLATEX Flag indicating whether to use pdflatex instead of dvipdfm
to generate the .pdf document (default false).

31.2 LaTeXDocument

The LaTeXDocument produces a LATEX document.
LaTeXDocument(<name>, <texfiles>)
The document <name> and <texfiles> are listed without suffixes.
Additional variables used:

TEXINPUTS The LATEX search path (an array of directories, default is taken
from the TEXINPUTS environment variable).

TEXDEPS Additional files this document depends on.

omake (1) 109 Version: 0.9.6.6, November 5, 2005

31.3 LaTeXDocumentCopy32 EXAMINING THE DEPENDENCY GRAPH

31.3 LaTeXDocumentCopy

The LaTeXDocumentCopy copies the document to an install location.
LaTeXDocumentCopy(<tag>, <libdir>, <installname>, <docname>)
This function copies just the .pdf and .ps files.

31.4 LaTeXDocumentInstall

The LaTeXDocumentInstall builds a document and copies it to an install loca-
tion in one step.

LaTeXDocumentInstall(<tag>, <libdir>, <installname>, <docname>, <files>)

32 Examining the dependency graph

32.1 dependencies, dependencies-all

$(dependencies targets) : File Array
$(dependencies-all targets) : File Array
$(dependencies-proper targets) : File Array

targets : File Array
raises RuntimeException

The dependencies function returns the set of immediate dependencies of
the given targets. This function can only be used within a rule body and all the
arguments to the dependency function must also be dependencies of this rule.
This restriction ensures that all the dependencies are known when this function
is executed.

The dependencies-all function is similar, but it expands the dependencies
recursively, returning all of the dependencies of a target, not just the immediate
ones.

The dependencies-proper function returns all recursive dependencies, ex-
cept the dependencies that are leaf targets. A leaf target is a target that has
no dependencies and no build commands; a leaf target corresponds to a source
file in the current project.

In all three functions, files that are not part of the current project are silently
discarded.

One purpose of the dependencies-proper function is for “clean” targets.
For example, one way to delete all intermediate files in a build is with a rule
that uses the dependencies-proper. Note however, that the rule requires
building the project before it can be deleted. For a shorter form, see the
filter-proper-targets function.

.PHONY: clean

APP = ... # the name of the target application
clean: $(APP)

rm $(dependencies-proper $(APP))

omake (1) 110 Version: 0.9.6.6, November 5, 2005

32.2 target 32 EXAMINING THE DEPENDENCY GRAPH

32.2 target

$(target targets) : Rule Array
targets : File Sequence

raises RuntimeException

The target function returns the Target object associated with each of the
targets. See the Target object for more information.

32.3 rule

The rule function is called whenever a build rule is defined. It is unlikely that
you will need to redefine this function, except in very exceptional cases.

rule(multiple, target, pattern, sources, options, body) : Rule
multiple : String
target : Sequence
pattern : Sequence
sources : Sequence
options : Array
body : Body

The rule function is called when a rule is evaluated.

multiple A Boolean value indicating whether the rule was defined with a dou-
ble colon ::.

target The sequence of target names.

pattern The sequence of patterns. This sequence will be empty for two-part
rules.

sources The sequence of dependencies.

options An array of options. Each option is represented as a two-element array
with an option name, and the option value.

body The body expression of the rule.

Consider the following rule.

target: pattern: sources :name1: option1 :name2: option2
expr1
expr2

This expression represents the following function call, where square brackets
are used to indicate arrays.

rule(false, target, pattern, sources,
[[:name1:, option1], [:name2:, option2]]
[expr1; expr2])

omake (1) 111 Version: 0.9.6.6, November 5, 2005

33 REFERENCES

33 References

33.1 See Also

omake(1), omake-quickstart(1), omake-options(1), omake-root(1), omake-language(1),
omake-shell(1), omake-rules(1), omake-base(1), omake-system(1), omake-pervasives(1),
osh(1), make(1)

33.2 Version

Version: 0.9.6.6 of November 5, 2005.

33.3 License and Copyright

c© 2003-2005, Jason Hickey, Caltech 256-80, Pasadena, CA 91125, USA
This program is free software; you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 675 Mass
Ave, Cambridge, MA 02139, USA.

33.4 Author

Jason Hickey
Caltech 256-80
Pasadena, CA 91125, USA
Email: jyh@cs.caltech.edu
WWW: http://www.cs.caltech.edu/∼jyh

omake (1) 112 Version: 0.9.6.6, November 5, 2005

