
The Ott LATEX Layout Package ottlayout.sty

Rok Strnǐsa Matthew Parkinson

December 16, 2008

1 Introduction

The Ott LATEX Layout Package, ottlayout.sty, provides a range of options to
tune the typesetting of Ott-generated inductive definition rules and grammars,
overriding the default typesetting of the Ott-generated LATEX code.

This document illustrates the common-case usage of the package, using
Lightweight Java (LJ) [1] as an example Ott project. It should be read in
conjunction with the source for this document (manual.tex) and the Makefile.

2 Usage

To use the package, one first uses Ott to generate LATEX code with a chosen
-tex_name_prefix, by default ott, but here lj, as in the example Makefile:

lj_included.tex : $(lj)

ott $(INC_ARGS) -tex_name_prefix lj -tex $@ \

-merge true $(lj)

Then one builds a file such as lj_override.tex, e.g. as below.

%_override.tex: override.tex empty.ott

ott $(INC_ARGS) -tex_name_prefix lj \

-tex_filter override.tex $@ empty.ott

This file simply contains redefinitions of some default LATEX commands gener-
ated by Ott (with the lj prefix) to use the ottlayout.sty commands, e.g.

\renewcommand{\ljpremise}[1]{\premiseSTY{#1}}

\renewcommand{\ljusedrule}[1]{\usedruleSTY{#1}}

\renewcommand{\ljdrule}[4][]{\druleSTY[#1]{#2}{#3}{#4}}

\renewenvironment{ljdefnblock}[3][]{%

\defnblockSTY[#1]{#2}{#3}}{\enddefnblockSTY}

Finally, in the user LATEX document (for example this manual.tex), one: (a) in-
cludes the generated LATEX for the user language, e.g. with \include{lj_included};
(b) uses the ottlayout.sty package, e.g. with \usepackage{ottlayout}; and
(c) uses the generated override file to link the generated LATEX with ottlayout.sty,
e.g. with \include{lj_override}.

1

3 Displaying grammar

To display all Ott-generated LATEX for LJ, we would normally write the com-
mand \ljall{}. To output all the LJ’s grammar, we would use the LATEX
command: \ljgrammar{}. To show only selected parts of the grammar, we
would normally use the command \ljgrammartabular{}. For example, to dis-
play the grammar of LJ’s statement (s) and class definition (cld), we would
write 1

\ljgrammartabular{\ljs\ljinterrule\ljcld\ljafterlastrule}

to produce:

s ::= statement
| { sk

k } block
| var = x ; variable assignment
| var = x . f ; field read
| x . f = y ; field write
| if (x == y) s else s ′ conditional branch
| var = x .meth (y) ; method call
| var = newctxcl(); object creation

cld ::= class

| class dcl extends cl { fd meth def } def.

Alternatively, we can use the ottlayout package’s \grammartabularSTY{}
to produce a slightly more compact output, usually more suitable for publica-
tions. To display the same grammars, we would write

\grammartabularSTY{\ljs\\\ljcld}

to produce:

s ::= statement
| { sk

k } block
| var = x ; variable assignment
| var = x . f ; field read
| x . f = y ; field write
| if (x == y) s else s ′ conditional branch
| var = x .meth (y) ; method call
| var = newctxcl(); object creation

cld ::= class

| class dcl extends cl { fd meth def } def.

1The automatically generated grammar tabular command, here \ljgrammartabular{}, uses

the supertabular package. Therefore, if we use the default grammar tabular, we have to ex-

plicitly import this package by writing \usepackage{supertabular} in our LATEX document’s

prelude.

2

Note that in both cases the comments on the right are aligned according
to the longest production in the block. Therefore, if the length of productions
varies a lot, it is sometimes suitable to split them up into separate grammar
tabulars. We could split the above example by writing

\grammartabularSTY{\ljs}\\

\grammartabularSTY{\ljcld}

to produce:

s ::= statement
| { sk

k } block
| var = x ; variable assignment
| var = x . f ; field read
| x . f = y ; field write
| if (x == y) s else s ′ conditional branch
| var = x .meth (y) ; method call
| var = newctxcl(); object creation

cld ::= class

| class dcl extends cl { fd meth def } def.

4 Displaying rules

To display all the rules of LJ, we would normally use the Ott-generated LATEX
command \ljdefnss{}. To show all the rules of the LJ’s reduction relation,
we would use the command \ljdefnrXXstmt{} — if you are not sure what the
name of the command you are looking for is, the easiest way to find out is to
check the Ott-generated LATEX file, which is in our case lj included.tex.

The ottlayout package gives many different options for displaying a partic-
ular rule and groups of rules. The currently available display options are:

Setting name Possible values Default value

showruleschema yes | no yes
showcomment yes | no yes
rulelayout oneperline | nobreaks oneperline
premiselayout oneperline | oneline | justify justify
premisenamelayout right | left | topright | none right
numberpremises yes | no no
numbercolour any dvips colour name Gray

The default settings result in the same output as if the ottlayout package was
not used.

We use LJ’s (fairly complicated) reduction rule for methods to demonstrate
a few of the available display settings for an example. To display the LJ rule
r mcall with default settings we write

3

\ljdrulerXXmcall{}

which produces:

L (x) = oid

H (oid) = τ

find meth def (P , τ , meth) = (ctx , cl meth (clk vark
k
) { s ′j

j
return y ; })

var ′

k

k
⊥dom (L)

distinct (var ′

k

k
)

x ′ /∈ dom (L)

x ′ /∈ var ′

k

k

L (yk) = vk
k

L′ = L [var ′

k 7→ vk
k
] [x ′ 7→ oid]

θ = [vark 7→ var ′

k

k
] [this 7→ x ′]

θ ⊢ s ′j s ′′j
j

θ (y) = y ′

(P , L, H , var = x .meth (yk
k) ; sl

l) −→ (P , L′, H , s ′′j
j
var = y ′ ; sl

l)
r mcall

Note that math mode is entered automatically, which means that we can use
any LATEX text layout utilities to layout our rules as we wish.

We can change the default setting with command \ottstyledefaults{} by
passing keys and values in the KeyVal style. For example, to make the premises
display more compactly in all rules from now on, we write

\ottstyledefaults{premiselayout=justify}

Now the the command \ljdruleXXmcall{} produces the following instead:

L (x) = oid H (oid) = τ

find meth def (P , τ , meth) = (ctx , cl meth (clk vark
k
) { s ′j

j
return y ; })

var ′

k

k
⊥dom (L) distinct (var ′

k

k
) x ′ /∈ dom (L)

x ′ /∈ var ′

k

k
L (yk) = vk

k

L′ = L [var ′

k 7→ vk
k
] [x ′ 7→ oid] θ = [vark 7→ var ′

k

k
] [this 7→ x ′]

θ ⊢ s ′j s ′′j
j

θ (y) = y ′

(P , L, H , var = x .meth (yk
k) ; sl

l) −→ (P , L′, H , s ′′j
j
var = y ′ ; sl

l)
r mcall

To use the non-default settings for a particular rule, we can write the same
KeyVal pairs inside as the parameter to the rule command. For example, to
number the premises in the rule, to make the numbers yellow-orange, and to
place the rule’s name in top-right corner, we write

\ljdrulerXXmcall{numberpremises=yes,

numbercolour=YellowOrange,

premisenamelayout=topright}

4

which produces:

r mcall

1.L (x) = oid 2.H (oid) = τ

3.find meth def (P , τ , meth) = (ctx , cl meth (clk vark
k
) { s ′j

j
return y ; })

4. var ′

k

k
⊥dom (L) 5.distinct (var ′

k

k
) 6. x ′ /∈ dom (L)

7. x ′ /∈ var ′

k

k
8.L (yk) = vk

k

9.L′ = L [var ′

k 7→ vk
k
] [x ′ 7→ oid]

10. θ = [vark 7→ var ′

k

k
] [this 7→ x ′] 11. θ ⊢ s ′j s ′′j

j

12. θ (y) = y ′

(P , L, H , var = x .meth (yk
k) ; sl

l) −→ (P , L′, H , s ′′j
j
var = y ′ ; sl

l)

As you can see, the setting for compacting the premises was kept, because it
was set globally for all rules following the \ottstyledefaults{} command.

As with commands for individual rules, we can pass in KeyVal pairs to
the commands that display groups of rules, which will affect how the rules
of that particular group of rules is displayed. If we wanted to display LJ’s
reduction rules for statements with current default display settings, we would
write \ljdefnrXXstmt{}. To display the reduction rules with rule names on
the left side, and their premises numbered, we write

\ljdefnrXXstmt{numberpremises=yes, premisenamelayout=left}

This produces2:

config −→ config ′ one step reduction

r field read npe
1.L (x) = null

(P , L, H , var = x . f ; sl
l) −→ (P , L, H , NPE)

r field write npe
1.L (x) = null

(P , L, H , x . f = y ; sl
l) −→ (P , L, H , NPE)

r var assign
1.L (x) = v

(P , L, H , var = x ; sl
l) −→ (P , L [var 7→ v], H , sl

l)

r field read
1.L (x) = oid 2.H (oid , f) = v

(P , L, H , var = x . f ; sl
l) −→ (P , L [var 7→ v], H , sl

l)

r field write
1.L (x) = oid 2.L (y) = v

(P , L, H , x . f = y ; sl
l) −→ (P , L, H [(oid , f) 7→ v], sl

l)

r mcall npe
1.L (x) = null

(P , L, H , var = x .meth (yk
k) ; sl

l) −→ (P , L, H , NPE)

2We set the font size to small so that the rules are not too wide.

5

r mcall cnfe

1.L (x) = oid 2.H (oid) = τ
3.find meth def (P , τ , meth) = null

(P , L, H , var = x .meth (yk
k) ; sl

l) −→ (P , L, H , CNFE)

r if true
1.L (x) = v 2.L (y) = w 3. v == w

(P , L, H , if (x == y) s1 else s2 s ′l
l
) −→ (P , L, H , s1 s ′l

l
)

r if false
1.L (x) = v 2.L (y) = w 3. v 6= w

(P , L, H , if (x == y) s1 else s2 s ′l
l
) −→ (P , L, H , s2 s ′l

l
)

r block
(P , L, H , { sk

k } s ′l
l
) −→ (P , L, H , sk

k s ′l
l
)

r new

1.find type (P , ctx , cl) = τ 2.fields (P , τ) = fk
k

3. oid /∈ dom (H) 4.H ′ = H [oid 7→ (τ , fk 7→ null
k
)]

(P , L, H , var = newctxcl(); sl
l) −→ (P , L [var 7→ oid], H ′, sl

l)

r mcall

1.L (x) = oid 2.H (oid) = τ

3.find meth def (P , τ , meth) = (ctx , cl meth (clk vark
k
) { s ′j

j
return y ; })

4. var ′

k

k
⊥dom (L) 5.distinct (var ′

k

k
) 6. x ′ /∈ dom (L)

7. x ′ /∈ var ′

k

k
8.L (yk) = vk

k

9.L′ = L [var ′

k 7→ vk

k
] [x ′ 7→ oid]

10. θ = [vark 7→ var ′

k

k
] [this 7→ x ′] 11. θ ⊢ s ′j s ′′j

j

12. θ (y) = y ′

(P , L, H , var = x .meth (yk
k) ; sl

l) −→ (P , L′, H , s ′′j
j
var = y ′ ; sl

l)

Therefore, Ott-generated LATEX commands for rules of a specific defn in the
Ott source file can take KeyVal arguments. However, note that currently the
Ott-generated LATEX output does not allow for this package to allow the same
arguments being passed to commands for a group of defns, i.e. defns.

References

[1] Strnǐsa, R., and Parkinson, M. Lightweight Java. http://www.cl.

cam.ac.uk/∼rs456/lj, Sept. 2006.

6

