
Regstab

http://regstab.forge.ocamlcore.org/

Vincent Aravantinos
vincent.aravantinos@gmail.com

http://membres-liglab.imag.fr/aravantinos

September 18, 2009

Contents

1 Description 2

2 Install 2
2.1 GODI . 2
2.2 Good Old Make . 3
2.3 Intel Mac OSX Binaries . 4
2.4 Machine-Independant Bytecode 4

3 Usage 4

4 (Informal) Language Definition 5
4.1 Propositional Formulae . 5
4.2 Schemata . 5
4.3 Constraints . 6
4.4 Functions . 6
4.5 Comments . 7

5 Examples 7

6 Tools 7
6.1 sch2cnf . 7
6.2 Vim syntax file . 8
6.3 Man pages . 8

1

http://regstab.forge.ocamlcore.org/
mailto:vincent.aravantinos@gmail.com
http://membres-liglab.imag.fr/aravantinos

7 Licence 8

1 Description

Regstab is a sat-solver extended to handle formula schemata i.e. constructions
of the form

∧n
i=1 ¬Pi ∨ Pi+1. Such schemata are considered to be unsatisfiable

iff all propositional formulae of the corresponding form are unsatisfiable.
It is generally not possible to automatize the (un)satisfiability of such ob-

jects. So Regstab is restricted to a specific form of schemata called “regular
schemata”. Hence the part “Reg” of Regstab. Furthermore Regstab is based
on an extension of propositional tableaux called stab. Hence the part “stab”
of Regstab. This is all described in detail in [ACP09b].

It is quite unusual to use propositional tableaux for a sat-solver but this
is much more natural to use tableaux rather than dpll to handle schemata
[ACP09a]. As a pure sat-solver Regstab is all the least efficient. But one
can easily think of combining Regstab with an efficient sat-solver in order to
benefit of both worlds.

2 Install

Preamble: install on Windows seems rather painful, if you agree then complain!

2.1 GODI

The simplest way to install Regstab is to use GODI1. GODI is a package
manager for Ocaml libraries and software. It has many many advantages for
Ocaml apps developpers.

Currently, the official version of GODI relies on ocaml 3.10, there is a beta
version of GODI for ocaml 3.11.12. See GODI documentation and install the
package ”apps-regstab”. The following will be installed (<PREFIX> is GODI
base directory):

• regstab, regstab.opt (if any), schf2cnf, schf2cnf.opt in <PREFIX>/bin.

• The manual (this file) into <PREFIX>/doc/apps-regstab/.

• The man pages into the directory <PREFIX>/man/man1/.

• The developer doc into the directory <PREFIX>/share/apps-regstab/developper doc.

• The vim syntax file into the directories $HOME/.vim/syntax and <PREFIX>/share/apps-regstab/vim.
1http://godi.camlcity.org/godi/index.html
2http://download.camlcity.org/download/godi-rocketboost-20090421.tar.gz

2

http://forge.ocamlcore.org/tracker/index.php?func=detail&aid=285&group_id=111&atid=548
http://godi.camlcity.org/godi/index.html
http://download.camlcity.org/download/godi-rocketboost-20090421.tar.gz

2.2 Good Old Make

Steps:

1. make all

Compile the byte-code version of Regstab.

2. (Optional) make opt

Compile the native-code version of Regstab if possible on your machine
(→ executable regstab.opt).

3. (Optional) make test

Run tests.

4. make install

• Copy the files regstab, regstab.opt (if any), schf2cnf, schf2cnf.opt
into the directory $PREFIX/bin.

• Copy the manual (this file) into the directory $PREFIX/doc/regstab/.

• Copy the man pages into the directory $PREFIX/man/man1/.

• Copy the developer doc into the directory $PREFIX/share/regstab/developper doc.

• Copy the vim syntax file into the directories $HOME/.vim/syntax and
$PREFIX/share/regstab/vim.

The environment variable PREFIX defaults to /usr/local.

Dependencies.

1. the Ocaml compiler, tested with 3.11.13

2. the Findlib library manager, tested with 1.2.44

3. the OMake build system, tested with 0.9.8.55

4. the Jane Street Core library, tested with 0.5.36

And possibly:

• If you’re under Windows: CygWin7.

• If you want to run tests: OUnit8

Notice that all those dependencies, except CygWin, can be handled through
GODI.

3http://caml.inria.fr/index.en.html
4http://projects.camlcity.org/projects/findlib.html/
5http://omake.metaprl.org/index.html
6http://ocaml.janestreet.com/?q=node/13
7http://www.cygwin.com/
8http://www.xs4all.nl/~mmzeeman/ocaml/

3

http://caml.inria.fr/index.en.html
http://projects.camlcity.org/projects/findlib.html/
http://omake.metaprl.org/index.html
http://ocaml.janestreet.com/?q=node/13
http://www.cygwin.com/
http://www.xs4all.nl/~mmzeeman/ocaml/

2.3 Intel Mac OSX Binaries

The Intel Mac OSX archive contains the following:

• regstab.opt: Intel Mac OSX native executable

• regstab: Machine-independent bytecode executable

• bin/: Contains schf2cnf, schf2cnf.opt and copies of regstab and
regstab.opt

• doc/: Contains the manual manual.pdf (this file)

• examples/: Contains examples

• man/man1/: Contains the man pages for regstab, regstab.opt, schf2cnf,
schf2cnf.opt

• tools/: Contains regstab.vim the vim syntax file for Regstab files

2.4 Machine-Independant Bytecode

Warning: the bytecode version of Regstab is much slower than the native one
(2s vs. 30s for examples/adder4.stab on my machine). Though you may
have no other choice: e.g. if your architecture is not supported by the OCaml
native compiler (very rare) or by one of the dependencies (e.g. Windows without
Cygwin)

The Bytecode archive contains the following:

• regstab: Machine-independent bytecode executable

• bin/: Contains schf2cnf and a copy of regstab

• doc/: Contains the manual manual.pdf (this file)

• examples/: Contains examples

• man/man1/: Contains the man pages for regstab and schf2cnf

• tools/: Contains regstab.vim the vim syntax file for Regstab files

3 Usage

regstab.opt [-verbose] [file]
regstab [-verbose] [file]

Prints unsatisfiable (resp. satisfiable) if the input formula is unsat-
isfiable (resp. satisfiable). If no file is provided the input formula is taken on
stdin.

4

Options:

-verbose Be verbose, currently only displays the input formula after parsing.
Allows to check that the input formula is indeed the formula understood
by Regstab.

4 (Informal) Language Definition

4.1 Propositional Formulae

• Usual logical notations are translated into ASCII: /\ stands for the con-
junction (∧), \/ stands for the disjunction (∨), ~ stands for the negation
(¬).

As a convenience some other usual connectives are pre-defined: P 1->P 2
stands for the implication (P1 ⇒ P2 := ¬P1 ∨ P2), P 1<->P 2 stands for
the equivalence (P1 ⇔ P2 := (P1 ⇒ P2) ∧ (P2 ⇒ P1)), P 1(+)P 2 stands
for the exclusive or (P1 ⊕ P2 := ¬(P1 ⇔ P2)).

• Propositional variables must be indexed: you can’t write A/\(B\/C) but
P 1/\(P 2\/Q 1) is ok. They can be any alphanumerical sequence starting
with an uppercase letter. Prime (’) can be appended to the sequence. The
index may be any integer.

• Formulae must be in negative normal form i.e. negation can only occur
just in front of a propositional variable: you can’t write ~(P 1/\P 2) but
~P 1\/~P 2 is ok.

• Precedence of connectives is as follows: /\ > \/ > (+) > <->,->.

4.2 Schemata

Syntax:

• Iterated conjunctions are written “/\i=k..e” where i is a variable, k is
an integer, and e is an arithmetic expression. k is called the lower bound
of the iterated conjunction, e is its upper bound. Iterated disjunctions are
written similarly with \/ instead of /\.

• Arithmetic expressions are written “n+k” or “n-k” where n is a variable
and k is a natural number.

• Inside iterations indexed propositional variables are written “P e” where
P is a propositional variable (defined in Section 4.1) and e is an arithmetic
expression. Do not put parentheses around e.

• Variables can be any alphanumerical sequence starting with a lower case
letter. Prime (’) can be appended to the sequence.

5

• Iteration operators have the highest precedence: /\i=0..n P i/\P i+1 is
interpreted as (/\i=0..n P i)/\P i+1, and not /\i=0..n (P i/\P i+1)
(think of the body of the iteration as being an argument given to the
operator /\i=0..n).

Example: P 1 /\ /\ i=1..n-1 (P i->P i+1) /\ ~P n

Restrictions:

• Iterations cannot be nested : you cannot write /\i=1..n (\/j=1..n ...)

• There may be only one free variable (called the parameter of the schema):
you cannot write /\i=1..n P i /\/\i=2..p Q i.

• All iterations must have the same lower bound9: you cannot write /\i=1..n
.../\/\i=2..n ...

• For P e occurring in some iteration, the only variable that can occur in e
is the variable which is iterated10 you cannot write /\i=1..n P n+1 but
/\i=1..n P i+1 is ok.

4.3 Constraints

Basic constraints can be given on the parameter of a schema. They must be
inserted after the schema and are written “| n op k” where n is the parameter
of the schema, k is an integer, and op ∈ {<,<=,=,>=,>}

Example:
P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n | n > 0

Notice that this example is unsatisfiable with the constraint but is satisfiable
without it: if we take n = 0 we get the formula P 1/\~P 0 which is satisfiable.
As schemata are considered to be unsatisfiable iff all propositional formulae
obtained by giving a value to n are unsatisfiable, this schema is not satisfiable.

4.4 Functions

To ease the input you can define simple functions. E.g. if you use often
A i->A i+1 with a different A (say B i->B i+1, C i->C i+1, . . .), then you can
factorize this by defining a function λX ·Xi ⇒ Xi+1. The syntax is as follows:
let F(X) := X i->X i+1 in ...

• The name of a function follows the same conventions as propositional
variable names.

9This can be easily circumvented if n > 1 by manually unfolding the first ranks:
∧n

i=1
Si∧∧n

i=2
Ti is equivalent, if n > 1, to S1 ∧

∧n

i=2
Si ∧

∧n

i=2
Ti

10This can be easily circumvented by factorising the constant indexed proposition:∧n

i=1
(Pn ∨ Pi) is equivalent to Pn ∨

∧n

i=1
Pi. Maybe we should automatize this.

6

• The parameters of the function is a comma separated list comprised be-
tween parentheses if the list is non-empty. The parameters may be either
propositional variable names or simple variable names. E.g. you can write
let F(X,n) := X n -> X n+1 in ...

• The right member of the affectation is any formula as defined previously.
It cannot contain a constraint.

Calling the function is done, e.g., as follows: F(P,n+1), i.e. the name of the
function followed by the list of parameters enclosed between parentheses. When
there is no parameter, you should still put parentheses, i.e. F().

Full Example:
let F(S,A,B,C,i) := S i <-> (A i(+)B i(+)C i-1) in
/\i=1..n (F(S,A,B,C,i) \/ F(S’,A’,B’,C,i+1))

4.5 Comments

Comments start by // and end at the end of the line.

5 Examples

See the directory examples.

6 Tools

6.1 sch2cnf

schf2cnf.opt n [file]
schf2cnf n [file]

Computes the propositional formula obtained by giving the value n to the
parameter of the input schema. Outputs the formula in DIMACS cnf format.
Thus schf2cnf can be used as a generator of problems for sat-solvers. If no
file is provided the input formula is taken on stdin.

Options:

-cnf Forces the displayed formula to be in conjunctive normal form, only useful
when -H is set.

-D Displays the formula in DIMACS cnf format (default)

-H Displays the formula in a human readable format

7

6.2 Vim syntax file

regstab.vim

Copy the file into /.vim/syntax/. You can use modelines to force the
syntax (see examples), you just have to add as the last line of your file:

// vim:ft=regstab

6.3 Man pages

Short man pages for quick recall are available in the directory man. If you do
not wish to install RegSTAB you can access them with man -M man/ regstab
or man -M man/ sch2cnf when in the top directory. However the full documen-
tation is the present file.

7 Licence

Free domain.

References

[ACP09a] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. A DPLL
Proof Procedure For Propositional Iterated Schemata. In Workshop
Proceedings of the 21st European Summer School in Logic, Language
and Information (Worskhop Structures and Deduction), 2009.

[ACP09b] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. A
Schemata Calculus For Propositional Logic. In Proceedings of the
18th International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods (TABLEAUX 2009), LNCS. Springer,
2009.

8

	Description
	Install
	GODI
	Good Old Make
	Intel Mac OSX Binaries
	Machine-Independant Bytecode

	Usage
	(Informal) Language Definition
	Propositional Formulae
	Schemata
	Constraints
	Functions
	Comments

	Examples
	Tools
	sch2cnf
	Vim syntax file
	Man pages

	Licence

