
The CamlTemplate Manual
Version 0.9.2

Benjamin Geer

15 June 2004

1 Introduction

This manual describes how to use CamlTemplate, a template processor for Objec-
tive Caml1 programs. It can be used to generate web pages, scripts, SQL queries,
XML documents and other sorts of text.

1.1 About This Manual

This manual is provided in HTML and PDF formats in the CamlTemplate distri-
bution.

1.2 Licence

CamlTemplate is free software2, released under the GNU General Public License3.
This manual is released under the same licence.

In addition, as a special exception, Benjamin Geer gives permission to link the
code of this program with the Apache HTTP Server (or with modified versions of
Apache that use the same license as Apache), and distribute linked combinations
including the two. You must obey the GNU General Public License in all respects
for all of the code used other than Apache. If you modify this file, you may extend
this exception to your version of the file, but you are not obligated to do so. If you
do not wish to do so, delete this exception statement from your version.

1http://caml.inria.fr
2http://www.gnu.org/philosophy/free-sw.html
3http://www.gnu.org/copyleft/gpl.html

1

1.3 Features
� A versatile, easy-to-learn template syntax that supports common scripting-

language constructs, while encouraging a separation between presentation
logic and application logic.

� The supported Caml data structures accomodate lists, tables and trees of
items in a straightforward manner.

� Works well with mod_caml4.

� Supports any ASCII-compatible encoding, including UTF-8.

� Optional support for multithreading.

CamlTemplate works by merging data with handwritten templates. This pro-
cess is illustrated in Figure 1.

The template contains only the handwritten material; some other program pro-
vides the data. The template’s author doesn’t need to be involved in writing that
program; he or she only needs to know what data the program provides, and can
therefore change the template without involving the program’s developers. Like-
wise, the program can be modified so that it obtains data in a different way, without
affecting the template. Different templates can be used to display the same data
in different ways (e.g. to generate normal and ‘printer-friendly’ versions of a web
page).

1.4 Getting CamlTemplate

The CamlTemplate source code and documentation can be downloaded from the
CamlTemplate web site5.

1.5 Installing CamlTemplate

1.5.1 Installing with GODI

If you use GODI6, you can install CamlTemplate from godi_console. Other-
wise, you can install manually as described below.

4http://www.merjis.com/developers/mod_caml/
5http://saucecode.org/camltemplate
6http://www.ocaml-programming.de/godi/

2

CamlTemplate

Data
Template

Output File

Figure 1: Generating a document

1.5.2 Installing Manually

Requirements:

� Objective Caml 3.07 or above.

� findlib7.

� PCRE-Ocaml8.

� GNU make.

Unpack the archive:

tar zxf camltemplate-x.y.z.tar.gz
cd camltemplate-x.y.z

To see the configuration options, type:

./configure --help

If you need thread support, type:

7http://www.ocaml-programming.de/packages/
8http://www.oefai.at/~markus/home/ocaml_sources.html

3

./configure --enable-threads

(Note that thread support doesn’t currently work with mod_caml.) If you don’t
need thread support and want to install in the default locations, type:

./configure

Then type:

make
make opt
make test

If there are no errors, type make install as root. This installs the byte-
code and native-code versions of the camltemplate library. Documentation is
installed in $PREFIX/doc/camltemplate. Example programs are installed
in $PREFIX/share/camltemplate.

To uninstall the library, type make uninstall as root.

1.5.3 Installing with mod_caml

You’ll need mod_caml 1.0.6 or above and Apache 1.3. (Apache 2.0 seems to be
incompatible with modules that use recent versions of PCRE9.)

First, install CamlTemplate as described in Section 1.5.2, without thread sup-
port.

Then compile and install mod_caml. Make sure it works correctly on its own
(try the hello.ml example that comes with it) before proceeding.

Now try try compiling and installing the example in examples/mod_caml
in the CamlTemplate distribution.

1.6 Mailing List and Support

The camltemplate10 mailing list is used for questions, suggestions, bug reports
and discussion about CamlTemplate.

There is also a Frequently Asked Questions11 page.

1.7 Author

CamlTemplate is developed and maintained by Benjamin Geer.

9http://nagoya.apache.org/bugzilla/show_bug.cgi?id=23952
10http://lists.saucecode.org/wws/info/camltemplate
11http://saucecode.org/camltemplate/faq.html

4

1.8 History

In 1999, Benjamin Geer wrote a template processor in Java, called FreeMarker12,
based on the experience of using a similar tool with graphic designers in a web
development shop. CamlTemplate borrows some aspects of FreeMarker (small
library not tied to web development, JavaScript-like expressions, Perl-like data
structures), as well as some ideas from the Apache Jakarta project’s Velocity13

template processor (generated parser, more concise syntax), released in 2001. The
first version of CamlTemplate was released in October 2003.

2 Writing Templates

2.1 Inserting Values

Here is a simple example of a template for generating an HTML page:

<html>
<head>

<title>${title}</title>
</head>

<body>
<h1>${title}</h1>

Today’s date: ${date}
</body>
</html>

This template expects two pieces of data: a title and a date. A dollar sign fol-
lowed by an expression in braces is called an expansion; it means, ‘insert the value
of this expression here’. If the value of title was Important Page, and the
value of date was 29 September 2003, the resulting document would look
like this:

<html>
<head>

<title>Important Page</title>
</head>

12http://www.freemarker.org
13http://jakarta.apache.org/velocity/

5

<body>
<h1>Important Page</h1>

Today’s date: 29 September 2003
</body>
</html>

A variable such as title or date is called a scalar variable, meaning that
it contains only one value.

If an expansion contains a value that has not been set, it produces no output.
This makes it convenient to write HTML form elements that display the value
previously entered, if any:

<input type="text" name="address" value="${address}"/>

2.2 Hashes

It is often convenient to group several related values together, and give a name to
the group. A hash is a collection of values, each of which has a name (called a
‘key’). Continuing with the example from the previous section, we might want to
break down the date into day, month and year components:

Today’s date: ${date.day}-${date.month}-${date.year}

Here, date is a hash, which contains three scalars: day, month and year.
(An expression like date.day is called a hash lookup.) The result might be:

Today’s date: 29-09-2003

Hashes can contain hashes, e.g.:

Date of birth:
${user.dob.day}-${user.dob.month}-${user.dob.year}

The string value of any variable (or other expression) can be used as a hash
key by enclosing the expression in square brackets:

Error in field "${fieldName}": ${errors[fieldName]}

If the value of fieldName was always "title", the above would be the
same as writing:

Error in field "title": ${errors.title}

6

2.3 Lists

Generated documents often contain lists of data. In a template, the #foreach
statement processes all the elements in a list. Here’s a simple example:

<p>Signatories:</p>

#foreach (signatory in signatories)
${signatory}
#end

The output might look like this:

<p>Signatories:</p>

Arthur Artichoke
Bernard Banana
Carol Carrot
Dorothy Date

For each element in the list, the #foreach statement stores the element’s
value temporarily in the name given before the in, then processes the template
text between the #foreach and the #end.

Here’s an example that generates an HTML table:

<table>
<thead>

<tr>
<th>Name</th>
<th>Date of Birth</th>
<th>Favourite Colour</th>

</tr>
</thead>
<tbody>

#foreach (person in garden.people)
<tr>
<td>${person.name}</td>
<td>${person.bdate}</td>

7

<td>${person.colour}</td>
</tr>
#end

</tbody>
</table>

Here garden is a hash that contains a list called people. Each element of
people is a hash containing three scalars (name, bdate and colour).

2.4 Conditionals

A template can contain optional text, which is used only if some condition is met.
The #if statement tests a condition. For example:

#if (approved)
This document has been approved for publication.

#else
This document is awaiting approval.

#end

We have seen scalars that contain strings (i.e. text); true and false are also
possible values of a scalar (e.g. approved above). Any scalar is equal to true
if it has a value other than 0 or the empty string. A list is equal to true if it exists
and isn’t empty. A hash is equal to true if it exists. This makes it convenient
to check, for example, whether a list contains any values before processing its
contents:

#if (searchResults)
#foreach (result in searchResults)
...

#end
#end

If a scalar contains a string or a number, an expression can test the scalar’s
value, using comparison operators such as == (equals), != (is unequal to), < (is
less than) and > (is greater than). You can also use #elseif blocks to test several
conditions. For example:

#if (hour > 17)
Good evening!

#elseif (hour > 12)
Good afternoon!

8

#else
Good morning!

#end

#if (status == "approved")
This document has been approved for publication.

#else
This document is awaiting approval.

#end

See Section 3.6 for the full details of expressions.

2.5 Setting values

The #set statement assigns a value to a name. The value is not set in the data
model that the program has provided; a template cannot use #set to change
its data model. The value remains internal to the template, and only while the
template is being merged; it is then forgotten. Returning to the earlier example of
an HTML table, suppose we wanted the background colour of the rows to alternate
between yellow and white. We could write:

<tbody>
#set (background = "white")

#foreach (person in garden.people)
<tr bgcolor="${background}">

<td>${person.name}</td>
<td>${person.bdate}</td>
<td>${person.colour}</td>

</tr>

#if (background == "white")
#set (background = "yellow")

#else
#set (background = "white")

#end
#end

</tbody>

9

2.6 Including Templates in Templates

Rather than copy and paste the same text into several templates, you can put the
common text in a separate template, and include that template in other templates
using the #include statement. For example, you might include a standard
header and footer on each page:

#include ("header.tmpl")

...

#include ("footer.tmpl")

Included templates will not see any values that have been set in the including
template, nor can the including template see any values that the included template
sets. If you want to pass values into a reusable section of template code, use a
macro, as described in the next section.

2.7 Macros

To create a reusable bit of template code that uses values you provide, you can
write a macro. The #macro statement defines a macro, which can then be used
as a statement in its own right. For example, here is a macro that formats a date in
a particular way, given the year, month and day as numbers:

#macro formatDate(year, month, day)
#var (monthPrefix)
#var (dayPrefix)

#if (month < 10)
#set (monthPrefix = "0")

#end

#if (day < 10)
#set (dayPrefix = "0")

#end

${year}-${monthPrefix}${month}-${dayPrefix}${day}
#end

(The #var statement will be explained in a moment.)
Here is some template code that expects a hash called date like the one we

saw in Section 2.2, and uses it to call the formatDate macro above:

10

Today’s date:
#formatDate(date.year, date.month, date.day)

A macro may be called with fewer arguments than it was defined with; the
remaining arguments are set to null. It is an error to call a macro with too many
arguments.

2.7.1 Defining Variables in Macros

The #var statement in the macro above initialises a variable for use within the
macro, setting it to a null value. We could have written:

#set (monthPrefix = "")

But if there was already a variable called monthPrefix outside the macro,
#set would change the value of the existing variable. (Sometimes this might be
what you want.) By contrast, a variable initialised inside a macro with #var only
exists within that macro, and doesn’t affect any other variable that might have the
same name outside the macro; its value is forgotten once the macro has completed.
Once you have used #var to initialise a variable in a macro, you can use #set
to change its value, as in the example above. To initialise a variable with a value
other than null, you can write:

#var (colour = "blue")

When used outside of a macro, #var has the same effect as #set.

2.7.2 Storing Macros in Separate Templates

If there are some macros that you want to use in more than one template, you
can define them in a separate template, which we’ll call a macro template. In each
template where you want to use those macros, you then need to tell CamlTemplate
where to look for them, using the #open statement. For example, if you’ve writ-
ten a macro template called macros.tmpl, and you want to use them in a tem-
plate called test.tmpl, you would put the following line in test.tmpl, be-
fore using any of the macros:

#open ("macros.tmpl")

You can put several #open statements in a template. When you call a macro,
CamlTemplate looks for it first in the template that’s being merged, and then in
any macro templates that have been opened in that template.

11

2.8 Functions

A function can be supplied to a template as part of its data. Since functions are
written in Objective Caml, they can do things that would be cumbersome or im-
possible to do in macros. A function takes one or more expressions as arguments,
and returns a value, which can be used in an expansion or in a statement.

For example, CamlTemplate provides a function called escHtml, for escap-
ing special characters in HTML documents. It can be used like this:

Company name: ${escHtml(companyName)}

If the value of companyName was Artichoke & Banana, the output
would be:

Company name: Artichoke & Banana

In addition to escHtml, CamlTemplate provides the following functions,
which application developers can choose to make available to templates:

urlEncode URL-encodes a string.

escHtmlAttr Escapes special characters in text to be included in an HTML at-
tribute.

escHtmlTextarea Escapes special characters in text to be included in an HTML
textarea.

asList Converts any value to a list, if it isn’t already a list. If the argument is
a list, returns the argument. If the argument is null, returns an empty list.
Otherwise, returns a single-element list containing the argument. This is
useful for dealing with form input fields that can have multiple values.

Each of these functions expects one argument.

2.9 Comments

You can write a comment in a template by surrounding it with #* and *#:

#* This is a comment. *#

Comments do not appear in the output when a template is merged. Comments
can contain comments.

12

3 Template Syntax Reference

3.1 Whitespace

It often makes templates more readable to include extra whitespace around state-
ments. In particular, the CamlTemplate syntax encourages a style in which each
statement is on a line by itself, possibly indented. This means that there is extra
whitespace around the statement: the indentation preceding it, and the newline
after it. However, it is often not desirable to include that extra whitespace in the
output. To support this, CamlTemplate ignores whitespace in certain contexts.
The basic rules are as follows:

� When a line begins with whitepace followed by #, that whitespace is ig-
nored.

� When a newline follows the closing parenthesis of a statement, or a keyword
such as #else, the newline is ignored.

Thus a statement or keyword on a line by itself ’disappears’ from the output
(except for any output produced by the statement itself). Consider the following
template:

#macro sayHello()
Hello.
#end
#if (true)

#sayHello()
#end

This will print a single line of text, consisting of Hello. followed by a
newline.

Another example:

#macro sayHello()
Hello.
#end
#if (true)
The greeting is: #sayHello()
#end

This will print:

The greeting is: Hello.

13

Note that since the call to #sayHello() does not fall at the beginning of a
line, the space after the colon is preserved.

It is often convenient to put a comment at the end of a line, like this:

#if (showGreeting)
${greeting} #* Display the greeting *#
#end

The rule for comments is therefore slightly different in one respect: whites-
pace preceding a comment is always ignored (even if it doesn’t start at the begin-
ning of a line), and a newline following a comment is ignored. The above example
will print the value of greeting, with no additional whitespace or newlines.

In other contexts where a newline makes the template more readable, but you
don’t want to include it in the output, you can precede it with a backslash; both
the backslash and the newline will be ignored, e.g.:

#if (true)
yes\
#end

This will print yes with no newline.

3.2 Comments

#* comment *#

Comments can be nested.

3.3 Escaping Characters

When used literally (rather than to indicate an expansion or a statement), ${ and
must be escaped with a backslash:

\${
\#

Additional backslashes preceding an escape sequence are simply included in
the output, as are backslashes not followed by ${ or #.

3.4 Expansions

${expression}

Adds the value of expression (which must evaluate to a scalar) to the output.

14

3.5 Statements

A statement begins with a # character followed by a keyword. When a statement
has a body, it is terminated by #end. If you need #end to be followed by a letter,
you can write #end#; similarly, you can write #else# instead of #else. This
makes it possible to write a template without newlines, e.g.:

There #if (n == 1)is 1 file#else#are ${n} files#end#.

3.5.1 foreach

#foreach (name in expression)

template text

#end

Evaluates expression as a list; iterates over the list, assigning each element in
turn to name. Any previous value of name is temporarily hidden.

3.5.2 if

#if (expression)

template text

#elseif (expression)

template text

#else

template text

#end

The #elseif and #else blocks are optional; any number of #elseif
blocks may be used. You can write #else# instead of #else.

15

3.5.3 set

#set (name = expression)

Assigns the value of expression to the variable name in one of the following
places, in order of preference:

1. In macro scope, if invoked in macro scope and the variable already has a
value there.

2. In template scope.

3.5.4 var

#var (name)
#var (name = expression)

Assigns the value of expression (or a null value if expression is not supplied),
to the variable name in one of the following places, in order of preference:

1. In macro scope, if invoked in macro scope.

2. In template scope.

3.5.5 include

#include (expression)

Interprets the string value of expression as the name of a template, and includes
the contents of that template in the one currently being processed.

3.5.6 Macro Definition

#macro macroname (paramname1, paramname2, ... paramnamen)

template text

#end

Defines a macro called macroname that takes n parameters.

3.5.7 Macro Invocation

#macroname (param1, param2, ... paramn)

Invokes the macro called macroname. If a macro is called with fewer param-
eters than were defined in the macro, the remaining parameters are set to null.

16

3.5.8 open

#open (expression)

Interprets the string value of expression as the name of a template, and adds it
to the list of templates in which macros will be searched for when invoked in the
currently running template.

3.6 Expressions

3.6.1 Data Types

� Scalar:

String A string literal is enclosed in double quotes: "string"). A double
quote in a string literal must be escaped by preceding it with a back-
slash. The escapes

�
t (tab),

�
r (carriage return) and

�
n (newline) can

also be used;
���

produces a backslash.

Integer An integer literal is a sequence of one or more digits, optionally
preceded by a minus sign. For convenience and readability, underscore
characters (_) are accepted (and ignored) within integer literals.

Float A floating-point literal consists of an integer part, a decimal part and
an exponent part. The integer part is a sequence of one or more digits,
optionally preceded by a minus sign. The decimal part is a decimal
point followed by zero, one or more digits. The exponent part is the
character e or E followed by an optional + or - sign, followed by one or
more digits. The decimal part or the exponent part can be omitted, but
not both (to avoid ambiguity with integer literals). For convenience
and readability, underscore characters (_) are accepted (and ignored)
within floating-point literals.

Boolean The boolean literals are true and false.

� Hash. Keys are identifiers, values are any template data type.

� List. Values are any template data type.

� Null. A nonexistent value of any type is represented as null. The null literal
is null.

17

3.6.2 Conversions

Scalar types are converted to other scalar types automatically. When an operator
has one integer operand and one float operand, the integer is promoted to a float.
Otherwise, the interpreter attempts to convert the right-hand side of an expres-
sion to the type of the left-hand side, and raises Template_error if this not
possible.

Any value can be compared with a boolean or null value. All scalar values
are equal to true except integer 0 and the empty string; a null value is equal to
false. All list and hash values are equal to true except the empty list. The
string and integer values of true are "true" and 1, respectively; the string and
integer values of false are "" (the empty string) and 0.

3.6.3 Identifiers

The characters allowed in identifiers are upper-case and lower-case ASCII letters,
digits, the underscore and the apostrophe. The first character of an identifier must
be an ASCII letter.

3.6.4 Operators

Table 1 lists the operators supported in expressions. Standard operator precedence
applies, and can be overridden using parentheses.

4 Programming with the CamlTemplate Library

When reading this section, you will probably find it helpful to refer to the Caml-
Template API documentation, which is generated by ocamldoc and provided in
the doc/api directory of the CamlTemplate distribution.

4.1 The General Procedure

The general procedure is as follows:

1. Create a template cache using Cache.create.

2. Create a data model consisting of values of type Model.tvalue.

3. Load a template using Cache.get_template.

4. Pass the template to the merge function to generate output.

18

Operator Meaning Compatible Types
! unary not boolean values
- subtraction, unary negation integers, floats
+ addition, string concatenation integers, floats, strings
� multiplication integers, floats
/ division integers, floats
% modulo integers, floats
== equality scalars
!= inequality scalars
< less than integers, floats, strings
> greater than integers, floats, strings
<= less than or equal to integers, floats, strings
>= greater than or equal to integers, floats, strings
&& and boolean values
|| or boolean values
. hash lookup with identifier as key hash on left, identifier on

right���
hash lookup with string as key hash on left, string on

right
() function call function on left, comma-

separated expressions in
parentheses

= assignment identifier on left, expres-
sion on right

Table 1: Operators

19

Here is ‘Hello, world!’ with a template. The template is as follows:

Here is the message: ${message}

And here is a program that uses it:

open Printf ;;
open CamlTemplate.Model ;;

let _ =
(* Make a template cache. *)
let cache = CamlTemplate.Cache.create () in
(* Create a model. *)

let model = Hashtbl.create 4 in
Hashtbl.add model "message"

(Tstr "Hello, world!");
try

(* Get the template. *)
let tmpl =

CamlTemplate.Cache.get_template
cache "hello.tmpl"
(* Make a buffer for the output. *)

and buf = Buffer.create 256 in
(* Generate output. *)
CamlTemplate.merge tmpl model buf;
print_string (Buffer.contents buf)

with
CamlTemplate.Syntax_error msg ->
eprintf "\n%s\n" msg

| CamlTemplate.Template_error msg ->
eprintf "\n%s\n" msg ;;

There are other examples in the examples directory of the distribution.

4.2 Template Data Models

A template data model is a tree of values; these values can be scalars (strings,
integers or booleans), lists, hashtables or functions. The root of the tree must be a
hashtable. In a template, an identifier by itself is the name of an entry in that root
hashtable.

Tabular data can be represented as a list of hashes of scalars. Each element in
the list represents a row in the table, and consists of a hash in which the names

20

are column names and the values are cell values. Such a model can be handled as
shown in Section 2.3.

4.3 Loading and Caching Templates

Once loaded and parsed, templates are cached; the Cachemodule provides func-
tions for creating template caches, getting templates from them and configuring
the behaviour of a cache (e.g. how often it is refreshed). By default, templates are
loaded from files, but you can provide a class of type source_loader to load
them from another source.

The #include and #open statements fetch the included or opened tem-
plate from the cache when the enclosing template is merged. Therefore, if an
#include or #open refers to a template that doesn’t exist, this won’t be de-
tected until the outer template is merged.

Macros are stored in the templates in which they are defined. When a template
containing a macro definition changes, the macro definition is updated as well.

4.4 Threads

If CamlTemplate has been compiled with thread support, the following applies:

� Multiple threads can safely use the same template cache concurrently.

� Multiple threads can safely pass the same template (or different templates)
to the merge function.

� Multiple templates running in different threads can safely use the same
model, as long as no template function changes the model. (Note that
none of the template statements, including #set and #var, can change
the model.) Values set using #set and #var are visible only to the thread
that set them.

4.5 Error Handling

The get_template function raises Syntax_error if it cannot parse a tem-
plate. It may also raise other exceptions if it fails to read template source code
because of an I/O error.

If a template cannot be merged because of a run-time error (e.g. a wrong data
type), the merge function raises Template_error.

If a Caml function called from a template is unable to complete successfully,
it can raise Tfun_error; this causes merge to raise Template_error.

21

5 Design

This section describes the implementation of CamlTemplate; you don’t need to
read it unless you are interested in developing CamlTemplate itself.

CamlTemplate is a fairly straightforward implementation of the Interpreter14

pattern. It uses ocamllex and ocamlyacc to parse template source code, gen-
erating an abstract syntax tree consisting of objects; these objects do the work of
interpreting the template.

5.1 The Abstract Syntax Tree

There are two kinds of objects in the abstract syntax tree, represented by the class
type statement and the virtual class expression. Statements produce out-
put; expressions have values. A template consists essentially of a list of statements
(each of which may contain one or more lists of statements, e.g. to represent the
body of a loop, or the branches of a conditional); when merged, the template
iterates over its statements, calling each statement’s interpret method in turn.

5.2 The Parser and Lexer

The parser is very straightforward, and probably needs no explanation if you are
familiar with ocamlyacc. The lexer, on the other hand, is rather complicated,
mainly because of the absence of delimiters around literal text in a template lan-
guage; this requires us to assume that we are reading literal text until we get to
something that looks like template language syntax.

The CamlTemplate lexer therefore maintains some state to indicate which
sort of environment is being tokenised. The variable cur_mode keeps track of
whether the lexer is currently in literal text, an expansion or a statement. For the
most part, instead of using specialised rules, the lexer uses a single rule contain-
ing all the patterns that are meaningful in tokens; once it has matched a pattern, it
decides what to do depending on its current mode.

5.3 Scopes

Scopes in CamlTemplate are roughly patterned after those in JavaScript. There
are two writable scopes, template scope and macro scope; the template model is
an additional read-only scope. Assignment and lookup of values in scopes are
encapsulated in the scope class in ctScope.ml.

14Erich Gamma et al., Design Patterns: Elements of Resuable Object-Oriented Software, Addi-
son Wesley Longman, 1997.

22

5.4 Thread Support

Since parser and lexer both maintain some global state, and since template caches
are modifiable, they are all protected by a global mutex (in ctCache.ml) when
thread support is compiled in.

23

