
Regstab’s User Manual

Version 1.4.8

http://regstab.forge.ocamlcore.org/

Vincent Aravantinos
vincent.aravantinos@gmail.com

http://membres-liglab.imag.fr/aravantinos

November 21, 2010

Contents

1 Description 2

2 Install 2
2.1 From sources . 2
2.2 Win32 . 3
2.3 Intel Mac OSX Binaries . 4
2.4 Machine-Independant Bytecode 4
2.5 GODI . 4

3 Usage 5

4 Language Definition 6
4.1 Propositional Formulae . 6
4.2 Schemata . 6
4.3 Constraints . 7
4.4 Functions . 8
4.5 Comments . 9
4.6 Formal Grammar . 9

5 Examples 10

1

http://regstab.forge.ocamlcore.org/
mailto:vincent.aravantinos@gmail.com
http://membres-liglab.imag.fr/aravantinos

6 Tools 10
6.1 sch2cnf . 10
6.2 Vim syntax file . 11
6.3 Man pages . 11

7 Licence 11

1 Description

Regstab is a sat-solver extended to handle formula schemata i.e. constructions
of the form

∧n
i=1 ¬Pi ∨ Pi+1. Such schemata are considered to be unsatisfiable

iff all propositional formulae of the corresponding form are unsatisfiable.
It is generally not possible to automatize the (un)satisfiability of such objects

[ACP09]. So Regstab is restricted to a specific form of schemata called “regular
schemata”. Hence the part “Reg” of Regstab. Furthermore Regstab is based
on an extension of propositional tableaux called stab. Hence the part “stab”
of Regstab. Regular schemata and stab are described in detail in [ACP09]. A
detailed overview of Regstab is provided in [ACP10c].

This is quite unusual to use propositional tableaux for a sat-solver but this
is much more natural to use tableaux rather than dpll to handle schemata
(though this is done in [ACP10a]). As a pure sat-solver Regstab is all the
least efficient. But one can easily think of combining Regstab with an efficient
sat-solver in order to benefit of both worlds.

Notice finally that the complexity of Regstab1 is studied in [ACP10b]: in
the (very) worst case, Regstab terminates in time and space O(22n

) where n is
the size of the formula.

2 Install

2.1 From sources

Steps:

1. make all

Compile the byte-code version of Regstab.

2. (Optional) make opt

Compile the native-code version of Regstab if possible on your machine
(→ executable regstab.opt).

3. (Optional) make test

Run tests.
1This is not actually Regstab but a procedure very close, so that the results also apply to

Regstab

2

4. make install (as root)

• Copy the files regstab, regstab.opt (if any), sch2cnf, sch2cnf.opt
into the directory $PREFIX/bin.

• Copy the manual (this file) into the directory $PREFIX/doc/regstab/.

• Copy the man pages into the directory $PREFIX/man/man1/.

• Copy the developer doc into the directory $PREFIX/share/regstab/developper doc.

• Copy the vim syntax file into the directories $HOME/.vim/syntax and
$PREFIX/share/regstab/vim.

The environment variable PREFIX defaults to /usr/local.

Dependencies.

• The Ocaml compiler, tested with 3.10.2 and 3.11.12.

• If you’re under Windows: MinGW3.

• If you want to run tests: OUnit4 (tested with 1.0.3) and the Findlib5

library manager (tested with 1.2.4).

2.2 Win32

The Win32 archive (not always available, I do my best as I don’t have a Win32
machine) contains the following:

• QUICKSTART: “Short manual”.

• bin/: Contains regstab.exe, regstab.opt.exe, sch2cnf.exe, sch2cnf.opt.exe.
Files with .opt are Win32 native executables, other files are machine-
independent bytecode executables. Notice that all those executables shall
be run in the Windows (DOS-like) command-line. Take care: ending the
standard input is done by CTRL+Z (and not CTRL+D as on Unix).

• doc/: Contains the manual manual.pdf (this file)

• examples/: Contains examples

• man/man1/: Contains the man pages for regstab, regstab.opt, sch2cnf,
sch2cnf.opt

• vim/: Contains regstab.vim the vim syntax file for Regstab files
2http://caml.inria.fr/index.en.html
3http://www.mingw.org/
4http://www.xs4all.nl/~mmzeeman/ocaml/
5http://projects.camlcity.org/projects/findlib.html/

3

http://caml.inria.fr/index.en.html
http://www.mingw.org/
http://www.xs4all.nl/~mmzeeman/ocaml/
http://projects.camlcity.org/projects/findlib.html/

2.3 Intel Mac OSX Binaries

The Intel Mac OSX archive contains the following:

• QUICKSTART: “Short manual”.

• bin/: Contains regstab, regstab.opt, sch2cnf, sch2cnf.opt. Files
with suffix .opt are Intel Mac OSX native executables, files without suffix
are machine-independent bytecode executables.

• doc/: Contains the manual manual.pdf (this file)

• examples/: Contains examples

• man/man1/: Contains the man pages for regstab, regstab.opt, sch2cnf,
sch2cnf.opt

• vim/: Contains regstab.vim the vim syntax file for Regstab files

2.4 Machine-Independant Bytecode

Warning: the bytecode version of Regstab is much slower than the native one
(2s vs. 30s for examples/adder4.stab on my machine). Though you may have
no other choice: e.g. if your architecture is not supported by the OCaml native
compiler (very rare) or by one of the dependencies.

The Bytecode archive contains the following:

• QUICKSTART: “Short manual”.

• bin/: Contains regstab and sch2cnf

• doc/: Contains the manual manual.pdf (this file)

• examples/: Contains examples

• man/man1/: Contains the man pages for regstab and sch2cnf

• tools/: Contains regstab.vim the vim syntax file for Regstab files

2.5 GODI

Note w.r.t. older versions: dependencies are now drastically reduced so it is
very easy to install Regstab without GODI.

GODI6 is a package manager for Ocaml libraries and software. It has many
many advantages for Ocaml apps developpers.

Currently, the official version of GODI relies on ocaml 3.10, there is a beta
version of GODI for ocaml 3.11.17. See GODI documentation and install the
package ”apps-regstab”. The following will be installed (<PREFIX> is GODI
base directory):

6http://godi.camlcity.org/godi/index.html
7http://download.camlcity.org/download/godi-rocketboost-20090421.tar.gz

4

http://godi.camlcity.org/godi/index.html
http://download.camlcity.org/download/godi-rocketboost-20090421.tar.gz

• regstab, regstab.opt (if any), sch2cnf, sch2cnf.opt in <PREFIX>/bin.

• The manual (this file) into <PREFIX>/doc/apps-regstab/.

• The man pages into the directory <PREFIX>/man/man1/.

• The developer doc into the directory <PREFIX>/share/apps-regstab/developper doc.

• The vim syntax file into the directories $HOME/.vim/syntax and <PREFIX>/share/apps-regstab/vim.

3 Usage

Regstab is always used via the command-line.

regstab.opt [OPTIONS] [file]
regstab [OPTIONS] [file]

Prints UNSATISFIABLE (resp. SATISFIABLE) if the input formula is unsatis-
fiable (resp. satisfiable). When the schema is satisfiable, a model is printed. If
no file is provided the input formula is taken on stdin (to send your formula
type in CTRL+D on unix/linux/macosx, CTRL+Z on Windows).

Options:

–exclude-vars v1,v2,...
If the schema is satisfiable, exclude the given variables of the printed model
(can improve readability of the model if you know that the values of some
variables are not significant).

-l Prints the list of lemmas (in the end only, not during execution).

-M Do not print a model when the schema is satisfiable (just print SATISFI-
ABLE)

--no-model
Same as -M.

--print-lemmas
Same as -l.

--verbose
Be verbose. Currently displays:

• the input formula as it is parsed by Regstab

• the number of rules applications

• the number of lemmas

• the maximal number of unfoldings

5

• the number of closed and looping leaves

-v Same as --verbose.

-x Same as --exclude-vars.

--help
Prints the list of options.

-help Same as --help.

4 Language Definition

We start with an informal description of the language, pointing out worth notic-
ing points. The formal grammar is given at the end of the section.

4.1 Propositional Formulae

• Usual logical notations are translated into ASCII: /\ stands for the con-
junction (∧), \/ stands for the disjunction (∨), ~ stands for the negation
(¬).

As a convenience some other usual connectives are pre-defined: P 1->P 2
stands for the implication (P1 ⇒ P2 := ¬P1 ∨ P2), P 1<->P 2 stands for
the equivalence (P1 ⇔ P2 := (P1 ⇒ P2) ∧ (P2 ⇒ P1)), P 1(+)P 2 stands
for the exclusive or (P1 ⊕ P2 := ¬(P1 ⇔ P2)),

• Propositional variables must be indexed: you can’t write A/\(B\/C) but
P 1/\(P 2\/Q 1) is ok. They can be any alphanumerical sequence starting
with an uppercase letter. Prime (’) can be appended to the sequence. The
index may be any integer.

• Precedence of connectives is as follows: /\ > \/ > (+) > <->,->.

Notice that formulae are internally translated into negation normal form,
i.e. negation only occurs in front of propositional variables.

4.2 Schemata

Syntax:

• Iterated conjunctions are written “/\i=k..e” where i is a variable, k is
an integer, and e is an arithmetic expression. k is called the lower bound
of the iterated conjunction, e is its upper bound. Iterated disjunctions are
written similarly with \/ instead of /\.

• Arithmetic expressions are written “n+k” or “n-k” where n is a variable
and k is a natural number.

6

• Inside iterations indexed propositional variables are written “P e” where
P is a propositional variable (defined in 4.1) and e is an arithmetic ex-
pression. Do not put parentheses around e.

• Variables can be any alphanumerical sequence starting with a lower case
letter. Prime (’) can be appended to the sequence.

• Iteration operators have the highest precedence: /\i=0..n P i/\P i+1 is
interpreted as (/\i=0..n P i)/\P i+1, and not /\i=0..n (P i/\P i+1)
(think of the body of the iteration as being an argument given to the
operator /\i=0..n).

Example: P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n

Restrictions:

• Iterations cannot be nested : you cannot write /\i=1..n (\/j=1..n ...)

• There may be only one free variable (called the parameter of the schema):
you cannot write /\i=1..n P i /\/\i=2..p Q i.

• All iterations must have the same bounds8: you cannot write /\i=1..n
.../\/\i=2..n ...

• For P e occurring in some iteration, the only variable that can occur in e
is the variable which is iterated9 you cannot write /\i=1..n P n+1 but
/\i=1..n P i+1 is ok.

4.3 Constraints

Basic constraints can be given on the parameter of a schema. They must be
inserted after the schema and are written “| n op k” where n is the parameter
of the schema, k is an integer, and op ∈ {=,>=,>}. Warning: since version
1.4.5 we do not allow constraints of the form n < k or n <= k anymore.

Example:
P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n | n > 0

Notice that this example is unsatisfiable with the constraint but is satisfiable
without it: if we take n= 0 we get the formula P 1/\~P 0 which is satisfiable.
As schemata are considered to be unsatisfiable iff all propositional formulae
obtained by giving a value to n are unsatisfiable, this schema is not satisfiable.

8In most cases, this can be easily circumvented. e.g. if n > 1 we can manually unfold the
first ranks:

Vn
i=1 Si ∧

Vn
i=2 Ti is equivalent, if n > 1, to S1 ∧

Vn
i=2 Si ∧

Vn
i=2 Ti

9This can be easily circumvented by factorising the constant indexed proposition:Vn
i=1(Pn ∨ Pi) is equivalent to Pn ∨

Vn
i=1 Pi. Maybe we should automatize this.

7

Restriction: positive length. Let k1 and n + k2 be the lower and upper
bounds, respectively, of the iterations occurring in the schema. Then the con-
straint should entail n ≥ k1 − k2 − 1, i.e. it should ensure that the length of
iterations is positive. Concretely if we have a constraint of the form n ≥ k3 then
we must have k3 ≥ k1 − k2 − 1.

Example:
P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n | n > 0

We have here k1 = 1 and k2 = −1. So n ≥ k1 − k2 − 1 amounts to n ≥ 1
which is indeed entailed by n > 0.

The same holds for:
P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n | n > 1
P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n | n > 2
P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n | n > 3
. . .
But not for:
P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n | n > -1
P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n | n > -2
P 1 /\ /\i=1..n-1 (P i->P i+1) /\~P n | n > -3
. . .

Notice that this restriction could be removed but at the expense of bad
performance. Inform me if you feel like it is an important lacking feature.

4.4 Functions

To ease the input you can define simple functions. E.g. if you use often
A i->A i+1 with a different A (say B i->B i+1, C i->C i+1, . . .), then you can
factorize this by defining a function λX ·Xi ⇒ Xi+1. The syntax is as follows:
let F(X) := X i->X i+1 in ...

• The name of a function follows the same conventions as propositional
variable names.

• The parameters of the function is a comma separated list comprised be-
tween parentheses if the list is non-empty. The parameters may be either
propositional variable names or simple variable names. E.g. you can write
let F(X,n) := X n ->X n+1 in ...

• The right member of the affectation is any formula as defined previously.
It cannot contain a constraint.

Calling the function is done, e.g., as follows: F(P,n+1), i.e. the name of the
function followed by the list of parameters enclosed between parentheses. When
there is no parameter, you should still put parentheses, i.e. F().

Full Example:
let F(S,A,B,C,i) := S i <-> (A i(+)B i(+)C i-1) in
/\i=1..n (F(S,A,B,C,i) \/ F(S’,A’,B’,C,i+1))

8

4.5 Comments

Comments start by // and end at the end of the line.

4.6 Formal Grammar

The main formal grammar is given in figure 1. The grammar for the definition
of functions as described in Section 4.4 is given separately in figure 2.

sentence ::= schema
| schema | constraint

schema ::= indexed-prop _ linear-expression
| schema /\ schema
| schema \/ schema
| schema -> schema
| schema (+) schema
| schema <-> schema
| ~ schema
| (schema)

| /\ var = integer .. linear-expression no-iteration
| \/ var = integer .. linear-expression no-iteration

constraint ::= var <= integer
| var >= integer
| var < integer
| var > integer
| var = integer

linear-expression ::= var
| integer
| var + integer
| var - integer

var ::= a...z {a...z|0...9|’}*

indexed-prop ::= A...Z {A...Z|a...z|0...9|’}*

integer ::= {0...9}+

Figure 1: Main Grammar.

9

sentence ::= ...

| let definition := schema in sentence
schema ::= ...

| function-call
definition ::= indexed-prop (parameters)

| indexed-prop
parameters ::= indexed-prop

| var
| indexed-prop, parameters
| var, parameters

function-call ::= indexed-prop (arguments)

| indexed-prop ()

arguments ::= linear-expression
| indexed-prop
| indexed-prop , arguments
| linear-expression , arguments

Figure 2: Grammar extension for definitions.

5 Examples

Figure 3 presents a list of the provided examples (not necessarily up to date)
along with an indicative time that it takes on my machine. All of those can be
found in the directory examples.

6 Tools

6.1 sch2cnf

sch2cnf.opt -param n [file]
sch2cnf -param n [file]

Computes the propositional formula obtained by giving the value n to the
parameter of the input schema. Outputs the formula in DIMACS cnf format.
Thus sch2cnf can be used as a generator of problems for sat-solvers. If no file
is provided the input formula is taken on stdin.

10

Options:

-cnf Forces the displayed formula to be in conjunctive normal form, only useful
when -H is set.

-D Displays the formula in DIMACS cnf format (default)

-H Displays the formula in a human readable format

6.2 Vim syntax file

regstab.vim

Copy the file into ~/.vim/syntax/. You can use modelines to force the
syntax (see examples), you just have to add as the last line of your file:

// vim:ft=regstab
You can also create a file ~/.vim/ftdetect/regstab.vim just containing

the following line:
au BufRead,BufNewFile *.stab set filetype=regstab

6.3 Man pages

Short man pages for quick recall are available in the directory man. If you do
not wish to install RegSTAB you can access them with man -M man/ regstab
or man -M man/ sch2cnf when in the top directory. However the full documen-
tation is the present file.

7 Licence

This software is published under the terms of the CeCILL-B licence, found in the
distribution. This licence is compatible with the BSD licence and is adapted to
French legal matters. More information on the CeCILL-B licence can be found
on Wikipedia ¡http://en.wikipedia.org/wiki/CeCILL¿.

References

[ACP09] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. A
Schemata Calculus for Propositional Logic. In Martin Giese and
Arild Waaler, editors, TABLEAUX, volume 5607 of Lecture Notes in
Computer Science, pages 32–46. Springer, 2009.

[ACP10a] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. A Decid-
able Class of Nested Iterated Schemata. In Giesl and Hähnle [GH10].

11

[ACP10b] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. Com-
plexity of the Satisfiability Problem for a Class of Propositional
Schemata. In Adrian-Horia Dediu, Henning Fernau, and Carlos
Martn-Vide, editors, Language and Automata Theory and Applica-
tions, volume 6031 of Lecture Notes in Computer Science, pages 58–
69. Springer, Heidelberg - To appear, 2010.

[ACP10c] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier.
RegSTAB: A SAT-Solver for Propositional Iterated Schemata. In
Giesl and Hähnle [GH10].

[GH10] Jrgen Giesl and Reiner Hähnle, editors. Automated Reasoning, 5th
International Joint Conference, IJCAR 2010, Edinburgh, Scotland,
July 16-19, 2010, Proceedings, Lecture Notes in Computer Science.
Springer - To appear, 2010.

12

Ripple-carry adder
x+ 0 = x 0.017s
commutativity 0.267s
associativity 28.902s
3 + 4 = 7 2.719s
x+ y = z1 ∧ x+ y = z2 ⇒ z1 = z2 0.490s

Carry-propagate adder
x+ 0 = x 0.016s
commutativity 0.165s
associativity 8.522s
equivalence between two different definitions of the same adder 0.164s
equivalence with the ripple-carry adder 0.194s

Comparisons between bit-vectors
x ≥ 0 0.004s
Symmetry of ≤ (i.e. x ≤ y ∧ x ≥ y ⇒ x = y) 0.009s
Totality of ≤ (i.e. x > y ∨ x ≤ y) 0.006s
Transitivity of ≤ 0.011s
1 ≤ 2 0.010s

Presburger arithmetic with bit vectors
x+ y ≥ x 0.026s
x1 ≤ x2 ≤ x3 ⇒ x1 + y ≤ x2 + y ≤ x3 + y 1m42s
x1 ≤ x2 ∧ y1 ≤ y2 ⇒ x1 + y1 ≤ x2 + y2 2.949s
x1 ≤ x2 ≤ x3 ∧ y1 ≤ y2 ≤ y3 ⇒ x1 + y1 ≤ x2 + y2 ≤ x3 + y3 46m57s (!)
1 ≤ x+ y ≤ 5 ∧ x ≥ 3 ∧ y ≥ 4 7m9s
same but with iterations factorized 2m14s

Other
automata inclusion 2.324s∨n

i=1 Pi ∧
∧n

i=1 ¬Pi 0.001s
P1 ∧

∧n
i=1(Pi ⇒ Pi + 1) ∧ ¬Pn+1|n ≥ 0 0.001s

model checking of some safety property 5.251s

Figure 3: Provided examples and indicative execution time.

13

	Description
	Install
	From sources
	Win32
	Intel Mac OSX Binaries
	Machine-Independant Bytecode
	GODI

	Usage
	Language Definition
	Propositional Formulae
	Schemata
	Constraints
	Functions
	Comments
	Formal Grammar

	Examples
	Tools
	sch2cnf
	Vim syntax file
	Man pages

	Licence

